
bÒgs.!
Blugs Reference Manual
Blugs List Management Engine 1.1

Document release 1.1
November 21, 2001

The list could surely go on, and there is
nothing more wonderful than a list,
instrument of wondrous hypotyposis.

— Umberto Eco, The Name of the Rose

L e g a l M u m b o - J u m b o

i

© 1999-2001, Brian S. Hall. All
rights reserved.

This document was written in
its entirety by Brian S. Hall,
who takes sole responsibility
for its content. All reports of
omissions, errors,
redundancies, or general
crappy writing should be
addressed to:
moses@blugs.com.

No warranties, express or
implied, are granted with
regard to any of the
technology described in this
document. The authors retain
all intellectual property rights
associated with the
technology described in this
document.

Trademarks: All brand names
and product names used in
this document are trade
names, service marks,
trademarks, or registered
trademarks of their respective
owners. The authors are not
associated with any vendor or
product, with the exception of
Blugs, mentioned in this
document. So there.

This document is neither
produced nor endorsed by
Apple Computer, Inc. Yup, we
admit it, it looks an awful lot
like an Inside Macintosh
volume.

About the silly name “Blugs”
(pronounced /«bl\gz/): it
comes from my friend R. Lon
Dobson, who created the
name “BlugsVipah River” as
part of the geography for a
fantasy role-playing game. I
found the name tremendously
funny and eventually applied
it to my list engine.

Incidentally, blugs (bÒgs.)
means “poured” in Classical
Tibetan. I have yet to find an
adequate metaphorical link,
but it does make for an exotic
logo.

The light source editor
window in Figure 3 was
inspired by the Persistence of
Vision Raytracer (POV-Ray)

by the POV Team. More
information on this
impressive software,
including source code, can be
found at www.povray.org.

Warning! The author is not
responsible for the veracity of
any statements made in this
documentation, nor of its
fitness for a particular
purpose, nor liable for any
loss of data that results either
directly or indirectly from the
use of Blugs and its associated
documentation. The author is
not responsible if you
magically turn into a bathtub.
Avoid reading this document
if you are taking heart
medication, are nursing,
pregnant or may become
pregnant, or have a history of
liver, spleen, neurological, or
automotive problems. Do not
use this document without
adequate ventilation. Avoid
mixing this document with
flammable solvents. Do not
drive or operate heavy
machinery while reading this
document. Do not eat, drink
or smoke after handling this
document. Do not read this
document.

Contact Information

Brian ‘Moses’ Hall

moses@blugs.com
moseshall@mac.com
http://www.blugs.com

841 E Copeland Rd
Montgomery, MI 49255
USA

Phone: 517-238-2921

Currently my answering
machine message is in Sanskrit.
Don’t let it throw you.

What’s with the nickname
‘Moses’ anyway?
It should be an interesting
story but it is not. My friend
Lon started calling me that in
high school. A decade and a
half later, it’s still with me.

If you want a copy of this
documentation without the
annoying “Hey, I changed this
section” bars, let me know.

C r e d i t s

ii

Credits

L E A D D E V E L O P E R

Brian ‘Moses’ Hall

A D D I T I O N A L C O D E A N D D E S I G N

Kyle Hammond
Mal Paine
Andreas Petterson

S P E C I A L T H A N K S T O
Peter O’Gorman for bailing me out in the 11th hour with a 1.0b1 ftp mirror
Sebastiano Pilla for a lot of work on Pascal compatibility
Peter Robinson for requesting an MPW version
Charlie Vass for some great inside information
Jordan Zimmerman for the Color MDEF code
and
R. Lon Dobson for the name Blugs
(yes, it’s his fault)

C o n t e n t s

iii

Contents

C r e d i t s i i

F i g u r e s i x

P r e f a c e x

About Blugs x
Blugs Features x
What’s New in Blugs 1.1 xi
When Not To Use Blugs xi
System Requirements xii

Blugs Concepts xii
Content Handlers xii
Lists, Tables, and Spreadsheets xii
Numbering xiii
Content Types xiii
Host Application xiii

Development Environment xiv
Globals and A5 xiv
Memory Management xv

Content Handler Memory Allocation xv
Memory Requirements xv

C h a p t e r 1 : B l u g s A P I 1

Introduction to Blugs Lists 1
List Parts 3

Cell 3
Scroll Bars 4
Title Bars 4
Top Left Corner 4
Sort Button 4
Grow/No-grow Box 5
Scroll Bar Widgets 5
Row and Column Borders 5

Using Blugs 5
Initialization 5
Creating a List 6
Handling List Events 7

Handling Mouse Interaction 7
Clicking in Cells 7
Customizing Cell Selection 7
Selectability and Representatives 8

C o n t e n t s

iv

Clicking in Titles 8
Drag and Drop 9
Drag and Drop Disclosure Constraints 10
Handling Keyboard Interaction 10
Arrow-key Selection 10
Keyboard Navigation 11
Inline Editing 11
Keyboard Focus 12
Handling Idle Processing 12
Giving Time to Content Handlers 13
Idle Time and Inline Editing 13

Manipulating Cell Data 13
Installing Cell Data 13
Retrieving Cell Data 13
Installing and Retrieving User Data 14
Row and Column Identifiers 14
Row and Column Unique Identifiers 14

Customizing Blugs Using Callbacks 15
Customizing Cell Background Drawing 15
Customizing Bevel Button Drawing 15
Customizing Cell Borders 15
Customizing Cell Hiliting 16
Customizing Row Expansion 16
Enabling Secondary Sorting 17
Responding to Notifications 17

Blugs and Themes 17
Blugs Reference 19

Types and Constants 19
Global Settings Flags 19
Environment Flags 19
List Flags 20
Drag Flags 22
Row Data Flags 23
Column Data Flags 23
Title Bar Flags 24
Widget Flags 24
Part Codes 25
Title Zones 26
Hit Test Record 26
User-Defined Routines 27
Callbacks Record 29
Disclosure Option 29
Sort State 30
Key Result 30
Click Result 31
Get Select Method 31
Notification Messages 31
Error and Result Codes 32
Blugs Cell 32
Unique Identifiers 33
Miscellaneous Types 33

Blugs Routines 34
Initialization 34

BLEnter 34
BLExit 34

Creating and Disposing of Lists 35
BLNew 35
BLLoad 36

C o n t e n t s

v

BLFlatten 36
BLUnflatten 37
BLDispose 37
BLWindow 37

Rows and Columns 38
BLAddRows 38
BLAddColumns 39
BLDeleteRows 39
BLDeleteColumns 40
BLMoveRows 40
BLMoveMarkedRows 41
BLMoveColumns 42
BLCountRows 42
BLCountColumns 43
BLGetRowFlags 43
BLSetRowFlags 43
BLGetColumnFlags 44
BLSetColumnFlags 44

Metrics 45
BLGetViewRect 45
BLGetRect 45
BLSetRect 46
BLCellRect 46
BLGetMinimumSize 47
BLSetRowHeight 47
BLSetColumnWidth 48
BLSetDefaultCellSize 48
BLGetIndent 49
BLSetIndent 49

Events 50
BLClick 50
BLKey 50
BLIdle 51

Cell Selection 51
BLSetCellSelectable 52
BLSetRepresentativeColumn 52
BLSetSelect 53
BLSelectOneCell 53
BLSelectAll 54
BLDeselectAll 54
BLIsCellSelected 54
BLGetSelect 55
BLHitTest 55

Drag and Drop 56
BLTrackDrag 56
BLReceiveDrag 56
BLGetListFromDrag 57
BLGetCellFromDragItemRef 57

List Display 58
BLSetAutodraw 58
BLUpdate 58
BLIsVisible 59
BLSetVisible 59
BLIsActive 60
BLSetActive 60
BLGetFocusedPart 60
BLSetFocusedPart 61
BLGetColumnFontStyle 61

C o n t e n t s

vi

BLSetColumnFontStyle 62
Blugs User Pane Controls 63

BLMakeUserPaneControl 63
BLConvertUserPaneControl 63
BLRefFromUserPaneControl 64
BLDisposeUserPaneControl 64

Inline Editing 65
BLIsCellEditable 65
BLSetCellEditable 65
BLIsInlineEdit 66
BLGetInlineEditCell 66
BLBeginInlineEdit 67
BLEndInlineEdit 67

Cell Data 67
BLGetCellContentType 68
BLSetCellContentType 68
BLGetCellData 69
BLSetCellData 70
BLClearCell 71
BLCountCellFlavors 71
BLGetIndFlavorInfo 71

Sorting and Searching 72
BLGetSortState 72
BLSort 73
BLSearch 73

Row and Column Identifiers 74
BLSetRowIdentifier 74
BLGetRowIdentifier 75
BLSetColumnIdentifier 75
BLGetColumnIdentifier 76

Unique Identifiers 76
BLGetCellFromUID 76
BLGetRowFromUID 77
BLGetColumnFromUID 77
BLGetCellUID 77
BLGetRowUID 78
BLGetColumnUID 78

User Data 78
BLSetUserData 79
BLGetUserData 79
BLRemoveUserData 80

Disclosure 80
BLGetRowDisclosureLevel 80
BLSetRowDisclosureLevel 81
BLGetParentRow 81
BLRowIsDisclosed 82
BLExpandRow 82
BLCollapseRow 82
BLCountDescendants 83

Title Bars 83
BLNewTitleBar 83
BLGetHorizontalTitleBar 84
BLGetVerticalTitleBar 84
BLSelectTitle 85
BLGetSelectedTitle 85

Scrolling and Navigation 85
BLMakeVisible 86
BLPageUp 86

C o n t e n t s

vii

BLPageDown 86
BLSetScrollDistance 87

Widgets 87
BLAddWidgets 87
BLDeleteWidgets 88
BLCountWidgets 88
BLGetWidgetSize 89
BLSetWidgetSize 89
BLGetWidgetContentType 90
BLSetWidgetContentType 90
BLGetWidgetData 91
BLSetWidgetData 91
BLClearWidget 92
BLGetWidgetRect 92
BLGetWidgetFlags 93
BLSetWidgetFlags 93

Utility Routines 94
BLSettings 94
BLEnvironment 94
BLAppearanceVersion 94
BLCredits 95
BLDrawBevelButton 95
BLDrawPlacard 95

Registering User-Defined Routines 96
BLRegisterContentHandler 96
BLGetCallbacks 97
BLSetCallbacks 98
BLRegisterBackgroundProc 98
BLRegisterBevelButtonProc 98
BLRegisterBorderProc 99
BLRegisterHiliteProc 99
BLRegisterRowExpandProc 100
BLRegisterSecondarySortColumnProc 100
BLRegisterPreDragProc 101
BLRegisterDragDataProc 101
BLRegisterDropValidationProc 101
BLRegisterDropProc 102
BLRegisterPostDragProc 102

User-Defined Routines 103
MyBackgroundProc 103
MyBevelButtonProc 103
MyBorderProc 104
MyFlattenProc 105
MyHiliteProc 105
MyNotificationProc 106
MyRowExpandProc 106
MySecondarySortColumnProc 107
MyPreDragProc 107
MyDragDataProc 108
MyDropValidationProc 108
MyDropProc 109
MyPostDragProc 109

The 'LiSt' Resource 109

C h a p t e r 2 : C o n t e n t H a n d l e r s 1 1 4

Introduction to Content Handlers 114
What Content Handlers Can’t Do 114

Writing a Content Handler 115

C o n t e n t s

viii

Responding to Messages 115
Responding to blHandlerInitMsg 115
Responding to blHandlerDeinitMsg 115
Responding to blCellInitMsg 116
Responding to blCellDeinitMsg 116
Responding to blCellDrawMsg 117
Responding to blCellSetDataMsg 117
Responding to blCellClearDataMsg 117
Responding to blCellGetDataMsg 117
Responding to blCountImportFlavorsMsg 118
Responding to blCountExportFlavorsMsg 118
Responding to blGetIndImportFlavorInfoMsg 118
Responding to blGetIndExportFlavorInfoMsg 118
Responding to blInlineEditRegionMsg 118
Responding to blInlineEditBeginMsg 119
Responding to blInlineEditKeyMsg 120
Responding to blInlineEditClickMsg 120
Responding to blInlineEditEndMsg 121
Responding to blCellRegionMsg 122
Responding to blCellClickMsg 122
Responding to blCellIdleMsg 123
Responding to blCellMinSizeMsg 123
Responding to blSortMsg 124

TextEdit Issues 124
Appearance Themes and TextEdit 124
Summary of Content Handler Parameters 126

Content Handler Reference 127
Types and Constants 127

Content Handler Features 127
Content Handler Messages 128
Sort Replies 130
Search Replies 130
Other Handler Replies 131
Content Handler Parameter Block 132

Content Handler Routine 133
MyContentHandler 133

A p p e n d i x A : R e s t r i c t e d A P I 1 3 4

A p p e n d i x B : M i g r a t i o n 1 3 6

Classic API Comparison 136
Carbon API Comparison 137
Compatibility Macros 138

A p p e n d i x C : B l u g s F A Q 1 3 9

Blugs FAQ 139

G l o s s a r y 1 4 2

I n d e x 1 4 4

F i g u r e s

ix

Figures

Figure 1 A simple list 2
Figure 2 A more complex list 2
Figure 3 A complex spreadsheet 3
Figure 4 Sort button states 4
Figure 5 Effects of customized hiliting 16
Figure 6 Blugs under a custom Theme 18
Figure 7 Structure of the 'LiSt' resource 110
Figure 8 Structure of a row data entry 111
Figure 9 Structure of a column data entry 112
Figure 10 Structure of a cell or title data entry 112
Figure 11 Structure of a title bar entry 113

P r e f a c e

x

Preface

This chapter provides an overview of the Blugs list management engine. It identifies what
Blugs can and cannot do, and introduces some key concepts developers should understand
before programming with Blugs.

About Blugs

Blugs is a list management engine. It can be considered a replacement for the Mac OS List
Manager and DataBrowser. Blugs is distributed as a set of static libraries that can be
compiled into software that requires sophisticated list management.

Blugs Features

� The amount of data that can be stored in a Blugs list is limited only by available memory.
� Many library variants: PowerPC, Carbon, 68K A5 and A4, Pascal and debug, CodeWarrior

and MPW. All libraries do extensive parameter checking; the debug libraries additionally
report errors and warnings. With Blugs, error conditions are much easier to detect than
with the List Manager.

� Blugs only requires 32-bit GWorld support (System 7 and later). It uses advanced OS
features like the Appearance Manager and the Mac OS 8.5 Control Manager only when
available. Blugs gives you nearly a decade of backward compatibility.

� Built-in support for vertical and horizontal title bars.
� Special list format that accommodates cell and title data. Routines to load, flatten, and

unflatten to and from this format.
� Up to 65535 rows and columns.
� Inline text editing. Your application can begin an inline edit itself, or allow Blugs to detect

a click in editable text, or both.
� Fast built-in sorting and searching. In many cases, sorting is automatic, requiring no

intervention from your application. Blugs can draw a sort button to display and modify
sort status.

� Blugs calls upon the Appearance Manager to draw needed user interface primitives (bevel
buttons) and to set up an appropriate drawing state (when drawing colored or patterned
items like cell borders and backgrounds). When Appearance is not available, Blugs’
graphics routines mimic Apple’s Platinum appearance. Additional Appearance-savvy
drawing routines are provided as source code.

� Drag Manager support. Rows and columns can be rearranged by dragging. Drag-selection
by marquee is handled automatically.

� No reliance on code resources (like the List Manager’s 'LDEF' resources). All cell content
handling is done via application-supplied callbacks. Blugs’ content handler architecture is
richer and more flexible than the List Manager’s 'LDEF' interface. The Blugs SDK
includes a variety of content handlers with source code.

� Support for disclosure (hierarchical) lists.

P r e f a c e

xi

� Support for title rows that occupy the entire list width, regardless of how many columns
exist. Title rows can be used to label sections of a list, and can have disclosure triangles.

� Individual rows and columns are always resizable, either by user manipulation or by the
host application; your application can allow or disallow user changes.

� Live scrolling option with or without Appearance.
� Blugs always uses GWorlds for smooth drawing and scrolling.
� You can create an Appearance Manager user pane from a list with one function call.
� No reliance on other large static libraries (like the Standard Library). Blugs either calls

upon OS services, or does the job itself. This helps reduce software bloat.
� Blugs is ToolsPlus-savvy. (Specifically, Blugs sets the high bit in the refCon field of any

control it creates.)
� Blugs is theme-savvy. It can accommodate Mac OS 8.5 themes (real themes like Gizmo and

Paper) that contain patterns as well as colors. No apparent problems with Kaleidoscope,
either.

� Blugs is Aqua-savvy.

What’s New in Blugs 1.1

Blugs 1.1 fixes several bugs in 1.0:

� In version 1.0 the internal Appearance user pane callback for keyboard events calls BLKey
with the first two parameters reversed, leading to an incorrect key value being processed.

� In some cases after a call to BLUpdate or in other circumstances where Blugs updates the
onscreen list, the host window’s fore and back colors would not be reset to their original
states.

� The blCantEdit cell flag affected by BLSetCellEditable was being ignored.
� In 1.0 the initial settings passed to BLEnter weren’t modified correctly for Aqua, so Blugs

could create 8-bit GWorlds under Aqua, which is a no-no.
� Several small fixes that would be even harder to explain.

Blugs 1.1 adds the following enhancements:

� BLGetSelect takes an extra parameter, a value of type BLGetSelectMethod that
determines whether Blugs looks for a selection in all cells, one row, or one column.
BLGetSelect now returns an OSErr instead of a Boolean. noErr indicates a selection
was found. Be careful about this! If you used to call something like if
(BLGetSelect(...)) now you would call if (BLGetSelect(...) == noErr).

� blDumpGWorldsOnHide option added to global settings flags.
� User background-drawing procedures now return OSErr. A nonzero error code tells Blugs

to go ahead and draw its default background, as if the user routine were not installed.
Thus you can now pick and choose the cells to which you apply a special background.

� The BLHitTest routine allows you to see what part of a list the cursor is over. If you need
to support balloon help or contextual menus you will probably use this routine.

� Basic scroll bar widget support added. These widgets behave a lot like titles, but they are
simpler because they can’t be dragged and do not cause effects like sorting.

� User notification callback support, similar to DataBrowser notifications. Content handlers
can begin to issue commands back out to the host app. (This is not fully implemented in
1.1; eventually row expand procs will be mutated into notifications.)

� BLDrawPlacard moved from the open source “Appearance extras” file into Blugs, for
internal widget support.

When Not To Use Blugs

Because Blugs is a user interface tool, it is designed for “normal” conditions, when
memory allocation and QuickDraw use are permitted. As a result, Blugs is not compatible

P r e f a c e

xii

with interrupt-level processing. From the outset you should assume that all Blugs routines
can and will allocate, deallocate, relocate, or purge memory blocks, or call routines that
may do so. Nor can Blugs be used safely in a faceless background application (FBA). An
FBA, or daemon, is an application that does not have a graphical user interface, and thus is
not permitted a QuickDraw environment under versions of Mac OS to date. Blugs relies on
QuickDraw; this guarantees incompatibility in an FBA. Blugs should also not be used in an
MP task; it uses non-MP safe memory routines and freely calls non-reentrant Toolbox
functions.

System Requirements

Applications built with the 68K libraries require Color Quickdraw. This essentially means
two requirements: a 68020 or higher processor and System 7. The BLEnter routine will
return an error code if the minimum is not met.

The (classic) PowerPC libraries run on all systems available to PowerPC machines.

The Carbon libraries require CarbonLib 1.0.4 or later under Mac OS 8.1, or CarbonLib 1.0
or later under Mac OS 8.5. (This is because Blugs uses the BlockZero routine.)

Blugs Concepts

To use Blugs effectively, you should become familiar with a few new concepts, and
understand some important technical terms that will be used throughout this document.

Content Handlers

You will find that the Blugs library is nominally similar in design to the classic List
Manager. For Blugs, the content handler performs a role similar to that of the List
Manager’s 'LDEF' (List DEFinition) code resource. Macintosh system software provides a
default 'LDEF' for drawing text; the developer has the opportunity to create 'LDEF'
resources to customize data display. For Blugs, content handlers provide the code
necessary to draw and manage cell contents. Without at least one content handler, Blugs is
like a database that cannot store data – it has no content-rendering capabilities at all. (This
is a deliberate design choice.) Chapter 2 of this manual is devoted to the Blugs content
handler architecture. You should read it if you aim to create your own handlers or modify
those provided with the Blugs distribution.

Lists, Tables, and Spreadsheets

We use list as a generic term for a Blugs object; a list may have zero or more rows and
columns, and thus zero or more cells. Blugs takes the generic list and divides it into two
types: the somewhat specialized table and the more generic spreadsheet.

Each cell in a spreadsheet can have its own content handler. This means that, for example,
in a single column there may be a cell that displays text, and another cell that displays a
picture.

A table, on the other hand, is both more constrained and more powerful. Each column in a
table has a content handler for all its cells. List views under the Mac OS Finder strikingly
resemble the table type list: each column displays a particular kind of data. If you use
Blugs to simulate a Finder list view, you might use an icon/editable text handler for the

P r e f a c e

xiii

file name and icon; you might use a date handler for the creation and modification date
columns. The word table should also be suggestive of database management: a column in a
relational database contains a single type of data. A table can have a different handler for
each column, or two or more columns can have the same handler. Because of data
uniformity within a column, tables have capabilities not available to spreadsheets. For
example, a table can be sorted (with help from a content handler) but a spreadsheet cannot.

Numbering

Blugs departs from the List Manager’s convention for row and column numbers. The List
Manager uses zero-based numbers; Blugs uses one-based numbers. Under the List
Manager, the first row in a list is row number zero. Under Blugs, the first row is row
number one; zero is typically used (when appropriate) to refer to titles. With respect to row
and column numbering, Blugs is similar to the Metrowerks PowerPlant LTable class and
its derivatives. Blugs uses a special data structure, BLCell, to refer to cells. Unlike the Mac
OS Cell and Point data structures which use signed 16-bit fields, BLCell uses unsigned
16-bit values. This means that your lists (theoretically — we do not recommend this) can
have over 65,000 rows and columns instead of the List Manager’s 32,000.

This document occasionally refers to the “first,” “last,” or “next” cell (when discussing cell
selection, for example). Like the List Manager, Blugs starts in the first row and goes across
column by column. Thus a cell with row = 1 and column = 2 comes before a cell with row
= 2 and column = 1.

Content Types

Blugs defines a special integer type, BLContentType (an unsigned 16-bit integer), to refer
to cell content. A content handler is a routine; a content type is a number. When your
application registers a content handler (via the BLRegisterContentHandler routine), it
associates a content type with a content handler. This association exists on a per-
application basis; a handler routine does not inherently possess a content type. You can
think of a content type as shorthand for a handler routine, unique to your application.
Blugs uses content types to organize its private table of handlers and their attributes. A
content type is not the same as a data flavor (like 'TEXT' and 'snd ') because a content
type’s associated handler may (and generally should) be able to import and export more
than one flavor of data.

Content type zero is not a valid content type — BLRegisterContentHandler will fail if
you try to register a routine as type zero. Zero is reserved for the meaning “no handler.”

Host Application

We expect that Blugs will generally be called by an application program. However, you
may find Blugs useful if you develop other varieties of code, such as plugs-ins executed by
another application. This poses no problem. Be aware, however, that in the course of this
documentation the term host application is used to refer to the code that calls Blugs.
Occasionally the term host window is used to refer to an application-owned window in
which a Blugs list is created. If you develop a plug-in that uses Blugs, you should
understand that the term host application still refers to your code and the user interface
items that it creates and owns.

P r e f a c e

xiv

Development Environment

Blugs 1.0 is distributed in the form of a vast array of static library flavors. You can use
these libraries whether your development environment is CodeWarrior or MPW. The
CodeWarrior libraries (which have no dot-suffix) are in Metrowerks’ proprietary format
and are for use with their products. The MPW libraries, all of which have an ‘-.o’ suffix
(e.g. BlugsLibPPC.o) are in XCOFF/MPW object format and can generally be used with
both CodeWarrior and MPW. Given a choice, you should favor the MPW libraries,
especially BlugsLibPPC.o and BlugsLibCARBON.o. The MPW MrC compiler is legendary
for its optimization capabilities. Currently MPW 68K libraries cannot be used in
CodeWarrior; attempts to link result in an error message to the effect that A5-relative 32-
bit offsets are not supported.

(Let’s also remember to yell at Apple a lot and persuade them to Carbonize MPW.)

We assume that your development environment includes a reasonably up-to-date version
of Apple’s Universal Headers. At time of writing that is version 3.4.1, but version 3.2 and
possibly before should work. In order to use Blugs.h you will need Appearance.h,
which is included in recent Universal Headers. For Carbon compatibility, the type
WindowPtr is eschewed in favor of WindowRef. You will need a version of Windows.h
or MacWindows.h that defines WindowRef in some manner, whether as a WindowPtr or
as a Carbonated opaque type. Please keep in mind that backward compatibility with older
Universal Interfaces releases is not a priority.

You will need to include AppearanceLib, ControlsLib, and MathLib – as appropriate to the
target runtime – if your project does not already include them. ControlsLib gives Blugs
access to the Control Manager additions in Mas OS 8.5 enabling proportional scroll
indicators; it is only appropriate for PowerPC targets. MathLib supports the small amount
of floating-point math used in adjusting scroll bars. You can weak-link (“import weak”)
the former two libraries.

C and C++ users should use the non-Pascal libraries. If you desire Pascal conventions for
whatever reason, include the following line in your project’s prefix file:
#define BL_PROC pascal
Then use the appropriate Pascal library in your project. Note there are no PowerPC Pascal
libraries as such – the PowerPC architecture overrides language-specific parameter passing
conventions. Pascal users should always use the Pascal libraries for 68K targets.

Blugs relies on a small number of resources that should be included in your project; they
are in the file Blugs.rsrc. The file just consists of two 'CURS' resources. If you forget or
decide not to include the file, Blugs will run without complaint or mishap but will not
display its custom cursors. If you want Blugs to use different cursors, replace the ones
provided with your own, making sure to use the same numbers.

In order to use the included resource templates to view 'LiSt' resources, you will need
to use Resorcerer from Mathemæsthetics. Apple’s ResEdit does not support the more
sophisticated templates that Resorcerer does. (In fact, you should avoid even opening this
'TMPL' with ResEdit.) For creating 'LiSt' resources you should use the Rez compiler.
The Blugs distribution includes Rez and DeRez definitions in Blugs.r.

Globals and A5

Blugs uses a small amount of global data, and must have access to its globals any time you
call one of its routines. For PowerPC targets this is never an issue. For 68K non-application
targets like plug-ins and code resources, the standard way to allow reference to global data
(normally referenced off the A5 register) is to use register A4. This allows the host to use

P r e f a c e

xv

A5 for its own globals without interference. To use this technique, include the appropriate
Blugs 68K A4 library instead of the normal one. You will need to include A4Stuff.h and
perform some setup at your code’s entry point.

Note that there are currently no 68K A4 MPW library flavors. MPW has a different
mechanism for setting up a fake A5 world in non-application code. Refer to Chapter 11 of
Building and Managing Programs in MPW (second edition).

Memory Management

This section addresses some memory management topics relevant to Blug programming.

Content Handler Memory Allocation

The content handlers included in the Blugs distribution use a fairly primitive memory
management scheme for storing their cell data: when more than 32 bits of storage are
needed, they allocate a handle for storage. This strategy has the advantage of being
familiar and simple. It has the disadvantage of possibly resulting in many, many small
chunks of memory scattered around the application heap (in pre-OS X environments,
anyway). If you find this distressing, you may want to consider a suballocator like
malloc. The performance hit should be minimal, if you are using the C Standard Library
anyway, or targeting OS X. I understand there are (were?) some open-source memory
suballocators available on the internet, but I haven’t used any of them. You may want to
modify the provided content handlers, perhaps declaring global allocator/deallocator
callbacks.

Memory Requirements

How much memory does Blugs consume? The table below summarizes. All sizes are
logical sizes. Physical sizes may be rounded to the next natural boundary, or whatever
black magic goes on in the Bowels of the Memory Manager. All elements are allocated as
handles. You will find that the biggest memory hog is likely to be the list GWorld.

Globals 1616 bytes
List 500 bytes (+ GWorld)
Title Bar 42 bytes
Titles 8 bytes per title
Cells 8 bytes per cell
Rows 24 bytes per row
Columns 48 bytes per column
Widgets 12 bytes per widget
User data 8 bytes per entry

C h a p t e r 1 : B l u g s A P I

1

Chapter 1

Blugs API

This chapter details the Blugs API (application programming interface) which your
application uses to create and manage scrollable lists. You can use the content handler
modules in the Blugs distribution to draw and manage the data you install in your list
cells. Later, when you are comfortable with the way Blugs does things, you can explore the
content handler architecture presented in Chapter 2. Then you can write content handlers
to manage exactly the type of data and display you need.

To get the most from this documentation, you should be familiar with the basic Mac OS
human interface toolbox managers — mainly the Appearance Manager, the Window
Manager, and the Control Manager. Some familiarity with the List Manager is assumed.

This chapter first discusses the user interface elements that make up a Blugs list. Then it
discusses how you can

� initialize and deinitialize Blugs
� create and dispose of lists
� handle user interaction with lists
� set, get, and modify list data
� customize Blugs with optional callbacks

Introduction to Blugs Lists

Blugs, like the Mac OS List Manager, allows you to create rectangular scrolling series of
data items. While a simple list might contain a single column and no other interface
elements, it is likely that many developers will take advantage of Blugs’ built-in
functionality to handle full-featured lists. Figure 1 illustrates a simple list. Figure 2
illustrates a full-featured list with its various parts labeled.

C h a p t e r 1 : B l u g s A P I

2

Figure 1 A simple list

Figure 2 A more complex list

Top Left Corner Sort Button

Vertical Title Bar

Horizontal Title Bar

Cell Column BorderRow Border

Filler TitleTitle

Widget

C h a p t e r 1 : B l u g s A P I

3

Figure 2 also illustrates an appearance typical of a table. Note that the cells in any given
column display the same kind of data. All cells in the column share a content type; for this
reason they are all drawn by the same content handler callback function. Figure 3
illustrates a complex spreadsheet. In this list, content types are assigned on a cell-by-cell
basis. This makes it possible for the second column in Figure 3 to contain vastly differing
cell contents with differing behaviors. It would be difficult to create this kind of list as a
table because it would be difficult write one content handler to draw and manage user
interaction with strings, checkboxes, popup buttons, and so forth.

Figure 3 A complex spreadsheet

Note
The term spreadsheet, as can perhaps be appreciated from Figure 3, is not intended to
convey the notion of mathematical elements and formulæ arranged in a grid. The term
simply distinguishes from the fairly constrained table lists. �

List Parts

This section illustrates and describes the various user interface elements that comprise a
Blugs list.

Cell

A list is composed of rows and columns. The intersection of a row and a column is a cell.
The cell is the fundamental unit of data storage and display in both Blugs and the List
Manager. Generally, a cell contains and displays a discrete data element of which it in
some sense has ownership. Each cell has its own storage area in memory. Your application
uses Blugs routines to install and retrieve cell data.

C h a p t e r 1 : B l u g s A P I

4

Scroll Bars

Like the List Manager, Blugs can create and manage user interaction with a horizontal
scroll bar and/or a vertical scroll bar. You do not need to use the Control Manager to
respond to events in these scroll bars; they are private to Blugs. You need only specify that
scroll bars are to be created. You can specify optional features such as live scrolling.

Title Bars

A list can optionally contain a horizontal and/or a vertical title bar. A title bar is divided
into titles along row and column boundaries. Thus, the first title in the horizontal title bar
is exactly as wide as the first column of cells. A title bar always contains as many titles as
there are rows or columns it labels. A list with no rows has no titles in its vertical title bar.
The two most salient functional differences between cells and titles are: first, titles only
move when the list is scrolled along the title bar axis (that is, the horizontal title bar only
moves when the list is scrolled right or left); second, titles can produce effects (such as
resizing and sorting) that cells cannot.

Top Left Corner

When both vertical and horizontal title bars exist, their intersection is called the top left
corner. Rather than waste the rectangle occupied by it, Blugs lets you install and display
data there like you would in a title or cell.

Sort Button

A sort button can be displayed above the vertical scroll bar. The sort button displays
whether or not the list is sorted, and if it is, shows the direction of sorting. When a sortable
list is created, the sort button is automatically drawn in an unsorted state. When the list is
initially sorted (in response to the user clicking on the sort button or selecting a column
title) the sort button changes to the small-to-large state. Subsequent clicks on the sort
button toggle between small-to-large and large-to-small states. The small-to-large state
implies smaller numbers come first, and also implies alphabetical order. Figure 4 illustrates
the three possible sort button states.

Figure 4 Sort button states

Unsorted

Small to Large

Large to Small

Under Aqua, the sort button becomes obsolete. Carbon libraries detect the presence of
Aqua and use Theme list header buttons instead of bevel buttons. List header buttons
indicate sort direction with an arrow inside the button; you no longer need an external
control to show and set sort direction. Under Aqua, Blugs draws the sort button as an
empty and inert list header button.

C h a p t e r 1 : B l u g s A P I

5

Grow/No-grow Box

When a list can be resized by dragging, you can have Blugs draw a grow box in the lower
right corner of the list. Blugs can accommodate the box and draw it if your application is
running under a pre-Appearance system, or allow an Appearance-savvy window
definition draw the box as part of the window frame. Blugs can also draw a grow box if the
list does not occupy the entire window. Two feature flags you use when creating a list
control how Blugs manages the grow box. (See the “List Flags” enumeration on page 20.) If
the blHasGrow flag is set, Blugs makes sure scroll bars leave room for a grow box. If the
blDrawGrow flag is set in addition, Blugs will draw a grow box in the lower-right corner
of the list (either using Appearance 1.1 or its own code). If only blDrawGrow is set, Blugs
draws a no-grow box, but only if it is needed — if both horizontal and vertical scroll bars
are present — to fill in their intersection.

Scroll Bar Widgets

Placards placed in line with a scroll bar are a fairly common element in more complex user
interfaces. Blugs supports these elements, called widgets. They can have content handlers,
and respond to and report user interaction.

Row and Column Borders

Most lists will display row and column borders to indicate cell boundaries. Such a border
is a one-pixel line drawn at the right or bottom of a cell. Blugs draws these borders only
when the list is active. When Appearance is available they are drawn with the Theme
Brush kThemeBrushListViewSeparator. Otherwise they are drawn in white. You can
also install a callback if you want to draw them yourself.

Using Blugs

This section covers the most important tasks involved in list management using Blugs:
initialization, list creation, event handling, and data manipulation. It also discusses some
secondary issues like customization.

Initialization

Before you can use Blugs, it must be initialized. To initialize, call BLEnter and check the
OSErr result code. If BLEnter return a nonzero error code, do not make any further use
of Blugs.

There are two reasons initialization may fail: memory shortage and lack of 32-bit GWorld
support. Since BLEnter allocates only a tiny amount of memory, such a failure would
indicate your application is critically short on memory. Lack of 32-bit GWorld support
makes Blugs inappropriate for applications targeted at, for example, Macintosh System 6
or machines with a 68000 processor (like the Mac Plus).

After initialization, prior to list creation, register the content handlers your lists will use.
Call BLRegisterContentHandler for each handler with a unique nonzero content type
you wish to use for the handler, the address of the handler function, and a variation code.

enum
{

kStringContentType = 1, // Can’t use type 0.
kPictureContentType

C h a p t e r 1 : B l u g s A P I

6

};

OSErr MyInitializeBlugs(void)
{

OSErr err;

err = BLEnter(0);
if (err) return err;
err = BLRegisterContentHandler(kStringContentType, 0,

&StringContentHandler);
if (err) return err;
err = BLRegisterContentHandler(kPictureContentType,

0, &PictureContentHandler);
return err;

}

When you are finished with Blugs, call BLExit to deinitialize. If your application is
quitting, this is unnecessary.

Creating a List

There are two ways to create a list using Blugs. You can create an empty list based on the
parameters you pass to BLNew, a function similar to the List Manager’s LNew.
Alternatively, you can load a list from a resource by calling BLLoad. The 'LiSt' resource
format allows you to embed cell and title data, so you can also populate your list
depending on how much data you wish to include in the resource.

The example code shows a list being created on the fly, and another list being created from
a resource.

#define kListResourceNumber 128
#define kListFlags (blVerticalScroll | blLiveScroll |\

blAutodraw | blVisible | blActive |\
blDrawRowBorders | blBorderMetrics)

#define kDragFlags 0 // No Drag and Drop.

OSErr SetUpLists(void)
{

BlugsRef list, listFromResource;
OSErr err;
Rect listRect = {3,3,163,103};
Point cellSize = {20,100};

listFromResource = BLLoad(kListResourceNumber, gWindow);
// Most likely reason for failure is memory shortage.
if (!listFromResource) return memFullErr;
SetWRefCon(gWindow, (UInt32)listFromResource);
// Now create a list by means of parameters.
// There will not be any data in the cells.
list = BLNew(1, 8, &listRect, cellSize, gAnotherWindow,

kListFlags, kDragFlags);
SetWRefCon(gAnotherWindow, (UInt32)list);
return (list == nil) ? memFullErr : noErr;

}

C h a p t e r 1 : B l u g s A P I

7

Handling List Events

To allow Blugs to function as intended, your application needs to send it three types of
events: mouse events, keyboard events, and idle events.

Handling Mouse Interaction

To allow Blugs to process a mouse click in a list, call BLClick. This is much the same as
the List Manager’s LClick routine. Both handle interaction as long as the mouse button is
pressed. This section describes in detail how BLClick works and how you can customize
it.

Clicking in Cells

Clicking in a cell generally results in cell selection or deselection. How this comes about
often depends on the content handler associated with the cell. By default, a click anywhere
in a cell’s rectangle causes a selection effect, but the content handler may modify this
behavior by defining a cell region. This is a region calculated by the content handler that
Blugs uses for hit-testing and hiliting. If the handler does not define a cell region, Blugs
uses the entire cell rectangle as the cell region. When the user clicks in the cell region, the
appropriate selection effect is applied.

In addition to defining a cell region, a content handler can request that clicks be sent to it.
This feature is used when the handler draws a control-like element, like a checkbox, and
needs to run its own mouse-tracking loop. This means that a handler can override default
behavior; you should keep this in mind if you use this kind of content handler.

Like the List Manager, Blugs takes into account the state of the modifier keys when
handling cell selection. By default the shift key enables selection of cell ranges, and the
command key allows discontiguous selections. When both the shift and command keys are
pressed, the shift key is ignored. (Arrow-key selection treats the shift-command
combination differently; see the section “Arrow-key Selection” below.)

If a click is within the rectangle normally occupied by cells, but is not in a cell region, Blugs
handles marquee selection. The user can drag a dotted marquee rectangle to select cells
that intersect it. Marquee selection only happens when the list’s flags have the blOnlyOne
and blNoDisjoint bits clear.

Customizing Cell Selection

Like the List Manager, Blugs allows you to customize cell selection behavior by setting bit
flags. The List Manager defines seven features it stores in a list’s selFlags field. Blugs
only defines four features; these are set when the list is created and cannot be changed
subsequently. (See the section “List Flags” on page 20.) These flags (blOnlyOne,
blNoExtend, blNoDisjoint and blUseSense) are based on the similarly-named List
Manager flags that are deemed most useful. The full set of seven is not implemented in
Blugs. (lNoNilHilite should be the content handler’s responsibility; lNoRect and
lExtendDrag are unnecessary because Blugs implements marquee drag-selection.)

blOnlyOne makes it impossible for more than one cell to be selected at a time. It applies to
selection by mouse and by arrow key. When a cell is selected, all other cells are deselected
automatically.

blNoExtend essentially turns the shift key into the command key. When a cell is shift-
clicked, cells that intervene between the clicked cell and another selected cell are not
automatically selected. This only applies to selection by mouse, not by arrow key.

C h a p t e r 1 : B l u g s A P I

8

blNoDisjoint, the opposite of blNoExtend, makes it impossible to select discontiguous
cells. The combination of blNoExtend and blNoDisjoint is currently undefined.

blUseSense only applies when the shift key is down. A click toggles selection status,
where by default shift-clicking an already-selected cell would have no effect.

Below is a summary of list behavior when your application reports a mouse event in a cell.

� If the click is outside the cell region, all cells are deselected.
� If the click is inside the cell region and no modifier keys are pressed, Blugs selects the

cell and deselects all others.
� If both the shift and command keys are pressed, Blugs ignores the shift key.
� If the click is inside the cell region and the command key is pressed, Blugs selects the

cell.
� If the list was created with the blOnlyOne flag set, all other cells are deselected.
� Otherwise, if the list was created with the blNoDisjoint flag set, Blugs selects all

cells between the clicked cell and any other selected cell.
� If the click is inside the cell region and the shift key is pressed, Blugs selects the cell. If

there are any selected cells before the clicked cell, all intervening cells between the
clicked cell and the last selected cell before it are selected. Otherwise, if any cells
following the clicked cell are selected, all intervening cells between the clicked cell and
the first selected cell after it are selected.
� If the list was created with the blOnlyOne flag set, the shift key is ignored.

Selectability and Representatives

List cells are generally used to display and allow user interaction with data. Such
interaction may involve selection, dragging, copying, and so on. Sometimes it makes sense
to only display information and not allow such interaction. When the user can select a cell,
the implication is that he or she can further “do something” with it. If nothing further can
be done, it may be reasonable to disallow selection. This might be useful when a cell is a
subordinate “view” of data contained in a different cell.

When there are multiple columns in a list, you can take selectability a step further. To
redirect all selection to a single column you can set that column as the list representative.
Now the user cannot select any cell that is not in the representative column; moreover,
clicking in one selects a cell in the representative column. The Blugs representative
implementation mimics the Finder’s list view. When a cell in the “Date Modified” column
(for example) is clicked, the Finder selects a cell in another column: the “Name” column.
(This is the apparent result – it is unclear whether these are different columns internally.
Clearly the List Manager is not being used.) Blugs’ representative mechanism can be useful
when multiple columns show information about a single entity.

To modify cell selectability, you can use the BLSetCellSelectable routine, or you can
alter a column’s blColumnCantSelect feature flag. You can use the
BLSetRepresentativeColumn routine to set a column as the list’s representative.

Clicking in Titles

Titles behave somewhat differently from cells with regard to mouse selection. Whereas by
default multiple cells can be selected, titles always have radio-button behavior when they
can be selected at all. This means that a maximum of one title in a title bar can be selected.

Titles, like cells, have content handlers, so the same comments about handlers intercepting
clicks (see above) apply to titles.

C h a p t e r 1 : B l u g s A P I

9

When you create a title bar, you encode behavior using feature flags enumerated in the
section “Title Bar Flags” on page 24. Three of these (blTitlesSelectable,
blTitlesReorderable and blTitlesResizableThickness) affect mouse
interaction. By default titles cannot be selected – they are inert labels – unless the
blTitlesSelectable flag is set. If the blTitlesReorderable flag is set, a title can be
dragged to a new location, moving it and an entire row or column of cells in the process.
When the blTitlesResizableThickness flag is set, clicking and dragging the bottom
edge of the horizontal title bar up or down, or dragging the right edge of the vertical title
bar left or right, results in resizing the title bar’s thickness. The blTitlesPinToRight bit
affects title resizing: when set the user cannot manually resize the last column/title even if
the others can be resized. Instead Blugs tries to keep the last column aligned with the right
edge of the list.

Although Blugs ignores modifier keys in its internal handling of title clicks, it passes the
state of the modifier key on to the title’s content handler if the handler requests mouse
events.

Drag and Drop

Blugs implements two strategies for dealing with the Drag Manager. The first is a
specialized internal strategy for drag-rearranging titles. The second is a more general cell-
dragging strategy. To use either strategy, your application must install a drag tracking
handler for each window you want to contain a drag-enabled list, so you can call
BLTrackDrag.

When Blugs detects a drag in a title whose title bar was created with the
blTitlesReorderable flag set, it starts a drag. The user can drag the title and its
associated row or column to a new location, but the drag is confined to the originating list.
The row or column is actually moved in the proccess of dragging, so the user can see
immediately what effect this rearranging will have. All of this behavior results from a call
to BLClick, so there is minimal work you must do to support it: just have a drag tracking
handler that can call BLTrackDrag.

The second drag strategy applies to cells. This is the more important and common type of
dragging behavior that users are likely to expect. It also requires more work on your part
because Blugs’ behavior is fairly generalized. To fully enable cell dragging, your
application must install callbacks in a list. There are drag-releated callbacks to:

� inspect a drag before it is tracked (optional)
� add cell data to a drag (required)
� validate the list drop location (optional)
� respond to an actual drop in a list (required)
� inspect a drag before it is disposed (optional)

The drop-oriented callbacks apply to a drag from anywhere entering a list. The others
apply to a drag that begins in a list. The BLDragDataProc (which adds cell data to a drag)
is required in order to complete creation of a drag from a list. The BLDropProc (which
responds to a drop in a list) is required to complete a drag into a list without the “drag
rejected” zoomback effect. The others are optional.

Note that Blugs does not automatically sort a list as a result of dragging into or within it.

Blugs draws an insertion caret similar to the one used in the CodeWarrior IDE file list, to
indicate where a drop will occur, and at what disclosure level. Blugs also draws drag
hiliting whenever a drag is being tracked in a list; the hiliting is drawn on the inside of the
view rectangle.

C h a p t e r 1 : B l u g s A P I

10

Important
Blugs does not use the Drag Manger to draw its drag hilite; it does not call any of the APIs
for drag hiliting. If your window has other items that can be hilited, you should detect
when the drag has entered/left a Blugs list and hide/show your hiliting in response. �

Drag and Drop Disclosure Constraints

Blugs implements a fairly complex strategy for constraining drop location when dragging
within a disclosure list (that is, when tracking in the originating list). Because rows will
most likely move as a result of a drop, Blugs makes sure to draw insertion feedback only
for drop targets that will not result in an impossible or confusing rearrangement.

Blugs prevents an insertion (drag to position/disclosure level) under these conditions:

� The insertion is a descendant of any of the rows being dragged. (Can’t drag a row into
itself.)

� The insertion would result in no net change of position and disclosure level in a single-
item drag. (Can’t drag an item where it already is.)

� The insertion is at a disclosure level less than that of the upper and lower row. (Can’t
break hierarchy.)

� The insertion disclosure level is more than one greater than that of the upper row.
(Can’t skip disclosure levels.)

When the cursor is at one of these illegal positions, the insertion caret disappears (although
drag hiliting is still shown) and a drop results in zoomback.

Note
Because disclosure makes drag handling more complex, you can enhance performance by
making sure the blDisclosure list flag is only set if you need it. �

Handling Keyboard Interaction

To allow Blugs to process keyboard input for a list, call BLKey. Blugs responds to user
keyboard activity in a number of ways. The keyboard may be used to navigate around the
list. Input may go into a cell that accepts inline editing. Another issue is keyboard focus:
when a list or cell can accept key events, the element should be focused. Blugs lets you
manipulate a list’s focusing behavior.

Blugs tries to filter out all keys that are not relevant. Blugs does not respond, for example,
to the tab key. Nor does it respond to function keys or command-key combinations as
these should go to the Menu Manager.

Arrow-key Selection

Blugs automates arrow-key selection when you call BLKey. Below is a summary of list
behavior when your application reports an arrow-key event. Behavior is determined by the
arrow key and any modifier keys that are pressed.

� If no modifier keys are pressed, Blugs tries to select the next cell in the direction of the
arrow key.
� If there is no next cell, there is no effect.
� If there is a next cell, all other cells are deselected.

� If the command key is pressed, Blugs selects the most distant cell in the direction of the
arrow key. All other cells are deselected.

C h a p t e r 1 : B l u g s A P I

11

� If the list was created with the blOnlyOne flag set, the command key is ignored
and the list behaves as if the arrow key was pressed without modifier keys.

� If the shift key is pressed, Blugs extends the current selection in the direction of the
arrow key.
� If the list was created with the blOnlyOne flag set, the shift key is ignored and the

list behaves as if the arrow key was pressed without modifier keys.
� If the key is left or up, the first selected cell is extended.
� If the key is right or down, the last selected cell is extended.
� If there is no cell in the appropriate direction, there is no effect.

� If both the shift and command keys are pressed, Blugs extends the current selection as
far as possible in the direction of the arrow key.
� If the list was created with the blOnlyOne flag set, the shift key is ignored and the

list behaves as if only the command key was pressed.
� If the key is left or up, the first selected cell is extended and all cells between it and

the top of the list are selected.
� If the key is right or down, the last selected cell is extended and all cells between it

and the bottom of the list are selected.

Keyboard Navigation

Blugs automates two types of keyboard navigation. One of these involves the secondary
navigation keys: home, end, page up, and page down. Additionally, return/enter keys
affect inline editing specifically. The other is key string navigation based on typed-in
characters. Both behaviors occur automatically when your application calls BLKey.

The secondary navigation keys have standard behavior. Home and end keys scroll to the
top left and bottom right, respectively. Page up and page down scroll up or down the list
height minus a small number of pixels.

Key string navigation is available in sorted (table) lists. Each list maintains a string based
on key events that have been directed at it within an interval that is twice the key threshold
value (accessed via LMGetKeyThresh) with a maximum of 120 ticks. When a new
character is added to this string, Blugs tries to find and select the closest matching cell in
the current sort column. Blugs then deselects other cells.

Inline Editing

Inline editing has been called the “holy grail” of lists. Although writing a content handler
capable of inline editing is not always easy, the payoff is great because it allows users to
directly manipulate list data in a familiar way.

When there is an inline edit session in a cell, all valid keyboard activity gets sent on to the
cell’s content handler. A handler can even request return and enter keys if it allows multi-
line editing fields. Otherwise, return and enter keys end the session.

When a selected cell receives a return or enter key, and the cell’s content handler supports
inline editing, an inline session is begun in that cell.

When an inline edit session ends, the list may be sorted automatically as a result. It
happens under these conditions: the list is a table that was already sorted over the column
in which the inline edit took place, and the handler supports string/data comparisons, and
the handler indicates that the cell data changed as a result of the edit session.

C h a p t e r 1 : B l u g s A P I

12

Keyboard Focus

Inside Macintosh: More Macintosh Toolbox describes a procedure for indicating keyboard
focus on a list. The old way of doing this just involved drawing a 2-pixel box around the
list. The Appearance Manager introduced a consistent method for drawing keyboard focus
with a hilite color. Blugs draws keyboard focus automatically, using the Appearance
Manager if available, using a sort of electric blue hilite color otherwise. A focus box, like a
list border, is drawn outside the list rectangle.

If a list is the only item in a window that accepts key activity, you may not need to focus it.
If the list’s edges extend to the window bounds, focus hiliting will not show up. For this
reason, Blugs accepts keyboard events regardless of its internal focused state. This internal
state is only used for determining if and when to draw the focus box.

Inline editing and focus interact, since an inline edit session receives keyboard events. If an
inline edit session begins in a cell, the list becomes defocused and the cell’s text box
becomes focused. If the cell is big enough, Blugs may be able to draw standard focus
hiliting around the text box (it’s up to the content handler). Since an inline edit session can
start as a result of keyboard events or after an idle event, you should call
BLGetFocusedPart after a call to BLKey or BLIdle. If the return value is
blFocusInlineEditPart then you should make sure any other controls in your
window are defocused. Similarly, you may need to check to see if an inline edit session has
ended — if a list’s focus reverts to kControlFocusNoPart then the edit session is over
and you can focus an appropriate interface item.

To determine what part of a list has focus, call BLGetFocusedPart. To modify focus, call
BLSetFocusedPart and pass a focus part code. Valid codes are:
kControlFocusNoPart, kControlFocusNextPart, kControlFocusPrevPart,
kControlListBoxPart. The focus part codes kControlFocusNextPart and
kControlFocusPrevPart are often appropriate for handling tab and shift-tab key
events. Here is a summary of the effects of each part code:

� If you pass kControlFocusNoPart, the list becomes defocused. If there is an inline
edit session, it ends.

� If you pass kControlFocusNextPart, the effect depends on whether there is an
inline edit session in progress.
� If there is an inline session, it ends. A new inline session begins in the next editable

cell if there is one. Otherwise no part of the list is focused.
� In searching for the next editable cell, Blugs stops at the end of the list. It does not

wrap around to the beginning. Blugs only searches the current list.
� If there is no inline session, the entire list’s focus toggles between on and off.

� If you pass kControlFocusPrevPart, the effect depends on whether there is an
inline edit session in progress.
� If there is an inline session, it ends. A new inline session begins in the previous

editable cell if there is one. Otherwise no part of the list is focused.
� In searching for the previous editable cell, Blugs stops at the beginning of the list.

It does not wrap down to the end.
� If there is no inline session, the list’s focus toggles.

� If you pass kControlListBoxPart, the list becomes focused. If there is an inline edit
session, it ends.

Handling Idle Processing

You need to allow Blugs some idle time because there are a number of housekeeping tasks
that it must do periodically. Call BLIdle for each list in an active window at least once
each time through your main event loop.

C h a p t e r 1 : B l u g s A P I

13

BLIdle calls content handlers that want idle time and then adjusts the cursor if needed. It
also starts an inline edit session if there is one pending.

Giving Time to Content Handlers

When initialized, content handlers may report that they need idle time. This idle time may
be used for periodic updates or whatever. Every time you call BLIdle, Blugs checks the
content handler for the cell under the cursor. If that handler wants idle events, Blugs calls
it with blIdleMsg.

Idle Time and Inline Editing

Giving an active list periodic time is especially critical when inline editing is involved.
TextEdit and WASTE need idle messages in order to flash the insertion caret. Whenever
you call BLIdle, Blugs checks to see if there is an inline edit session. If there is, it calls the
handler with blIdleMsg to allow the handler to call TEIdle or WEIdle.

When a list allows starting an inline edit session as a result of clicking on cell text, the
session does not begin right away. There is a pause, then a session is begun if no other part
of the list has been clicked in the meantime. That means that after a call to BLClick, there
may be an inline edit pending, but the session cannot begin until the proper number of
ticks have elapsed. This condition is checked at the end of BLIdle. (This Finder-like
behavior gives users a chance to avoid a potentially destructive edit.) So if you don't call
BLIdle, a potential inline edit session will never have the chance to start.

Manipulating Cell Data

This section discusses how you can install and retrieve cell and title data. It also discusses
how you can install additional application-defined data to keep for reference or to identify
rows and columns.

Installing Cell Data

When you store a list in a resource, you can store data for cells and titles. When you load
the list, cells for which you have provided data will be set to the provided content type and
data. Otherwise cells and titles begin life without content types or data.

To set a cell’s content type, call BLSetCellContentType. For tables, this call sets all cells
in a column to a new content type. Once a cell has a valid content type, you can install data
so that its content handler can draw it.

To store data in a cell, call BLSetCellData. You pass a buffer containing the data you
wish to install, the size of the data, and its flavor. The cell’s content handler typically stores
a copy of the data, or data derived from yours. (How this all works depends on the nature
of the data and how the handler is written.)

Retrieving Cell Data

To find out what a cell’s content type is, call BLGetCellContentType. If the cell has no
content handler associated with it, the result will be zero.

To find out about how many kinds of data can be retrieved from a cell, call
BLCountCellFlavors. To find about one of these flavors, call BLGetIndFlavorInfo.

C h a p t e r 1 : B l u g s A P I

14

BLGetIndFlavorInfo gets the flavor type (a four-character code) and size in bytes for
the indexed (1-based) flavor. You can use this returned size to make sure your buffer is
large enough should you wish to get the cell data in that flavor.

To retrieve data from a cell, or just to get the data size, call BLGetCellData. If you pass
the address of a buffer, the buffer size (maximum size the handler can copy), and the data
flavor you want, the cell’s content handler copies data into your buffer and indicates the
number of bytes actually copied. If you pass nil for the buffer address, then the handler
just returns the data size.

Installing and Retrieving User Data

Many Mac OS data structures, like the ControlRecord and WindowRecord, give the
application some storage space. This field is usually called a refCon. Unfortunately,
however many refCon fields a toolbox structure provides, it’s usually one less than the
number you want!

Blugs is a little more ambitious; it lets you store 32-bit data items with keys (four-character
identifiers). Any number of data items can be stored as long as the keys are unique. You
can use this mechanism to store any kind of data you want. Each list has its own storage
area (you have to get user data from the same list you stored it in). Blugs keeps entries
sorted by key, and uses a binary search algorithm for fast retrieval.

To install user data, call BLSetUserData and provide a key and a data item. If there is
already data installed for that key, Blugs replaces it. To retrieve user data, call
BLGetUserData and provide the key.

Row and Column Identifiers

Row and column identifiers are another method of getting application data into a list. You
can use a 32-bit row or column identifier for any purpose, but it may be most useful for
tracking rows and columns when they move (as a result of sorting or dragging). If your
application needs to locate a specific row or column that may have been renumbered, these
identifiers can provide position-independent information.

To set an identifier, call BLSetRowIdentifier or BLSetColumnIdentifier. To
retrieve an identifier, call BLGetRowIdentifier or BLGetColumnIdentifier. Blugs
does not enforce any uniqueness constraints on identifiers. (You can set all rows to the
same identifier, for example.)

Row and Column Unique Identifiers

The problem with identifying a cell by means of a BLCell structure is that it is a position
(row and column) masquerading as an entity. When you look at it from the data’s
perspective, a cell is just a location which can change if, for example, the list becomes
sorted. Exclusively using BLCell makes for some serious reentrancy issues. Ideally, a
content handler should be able to sort the list and Blugs should be able to recover the
current cell even though its coordinates have changed. Unique identifiers – UIDs -- are the
first step toward this enhanced functionality.

When Blugs adds a row or column to a list, it assigns a unique 64-bit integer. The first row
or column added to a list is given a UID of 0x00000000 00000001 and the numbers increase
from there. Blugs does not repeat UIDs; 64 bits pretty much ensures that a server running
for months and years at a time, constantly adding and deleting rows, will never cycle

C h a p t e r 1 : B l u g s A P I

15

through the complete range. I think even taking into account the most wildly optimistic
variations on Moore’s Law we’re assured a thousand year lifespan.

A row or column UID is encoded with the BLUID type, an UnsignedWide. A BLCellUID
is a data structure consisting of a row UID and a column UID. To get an identifier, call
BLGetRowUID, BLGetColumnUID, or BLGetCellUID. To get the current coordinates of
an item for which you have the identifier, call BLGetRowFromUID,
BLGetColumnFromUID, or BLGetCellFromUID.

Customizing Blugs Using Callbacks

When you create a list, you have a fairly wide range of choices for behavior. When
necessary, you can extend Blugs with your own callback routines to change the user
interface or other features. For API-specific details, see the sections “Registering User-
Defined Routines” on page 96 and “User-Defined Routines” on page 103.

Customizing Cell Background Drawing

By default, Blugs uses one of two colors (or patterns, when alternative themes are used
under Mac OS 8.5 or Kaleidoscope) for drawing a cell’s background: one for normal cells
(under Platinum and pre-Appearance , a light shade of gray), and another (typically a
darker gray) for cells in a sorted column. If you wish to change the appearance of cell
backgrounds, you can supply your own background-drawing callback.

Blugs calls background-drawing routines before drawing any other part of a cell. In a very
real sense, the background drawing procedure “erases” and begins the process of building
a cell’s appearance. It may be drawing over garbage pixels, so you should make sure your
procedure overwrites the entire cell rectangle.

If you want to shade differently depending on the cell’s position, a background procedure
is the way to go. This is how you can color alternating cells differently, for example. You
return an error code from your routine; anything other than noErr causes Blugs to apply
its normal shading.

Customizing Bevel Button Drawing

Blugs uses bevel buttons for drawing title bar elements (titles, fillers, top left), as the basis
for the sort button, and (when the Appearance 1.1 routine DrawThemeGrowBox is
unavailable) the grow box. (Under Aqua, Blugs uses kThemeListHeaderButton in the
horizontal title bar.) As a result, Blugs’ UI is consistent, both internally and with Apple’s
Platinum appearance. If, however, you need to bring Blugs in line with specialized
interface requirements, you can make radical changes just by supplying a custom bevel
button callback.

Your bevel button routine is given the opportunity to pick and choose which specific list
parts to draw. (If you wish, you can customize only the horizontal title bar, for example,
and let Blugs apply its default drawing routines to everything else.)

Customizing Cell Borders

Cell borders are light-colored 1-pixel lines drawn at the bottom and right of each cell. You
can install a callback routine to draw the borders differently. You can apply different
effects to different cells.

C h a p t e r 1 : B l u g s A P I

16

Customizing Cell Hiliting

Blugs uses a slightly unusual method for hiliting cells. Traditionally, to hilite something
you call LMSetHiliteMode and then EraseRect to set all pixels matching the
background color to the hilite color. However, this is not a good method if the current
Appearance Theme uses a background pattern. (You may have seen dire warnings about
this in Appearance.h and related documents.) The problem is that a background pattern
overrides a background color. Calling LMSetHiliteMode and EraseRect typically sets
only a few randomly scattered pixels (if any) to the hilite color and leaves the rest
unchanged. So Blugs applies hiliting after the cell background is drawn but before
anything else is drawn by calling LMGetHiliteRGB and RGBForeColor, and then
painting in this color. By means of this strange method, hiliting becomes a kind of
background upon which cell content is drawn. It can overwrite any Theme background
pattern.

When applying hiliting, if the cell’s content handler reports a special region for hiliting and
hit-testing, Blugs hilites only that region. Otherwise it hilites the whole cell rectangle. If
you need to, you can bypass default behavior and install your own cell hiliting callback. It
will be drawn after the background but before disclosure triangles, cell content, and cell
borders.

Important
A cell hilite procedure completely bypasses the retrieval of any special region. The content
handler is never called with the region request. Be aware that cell content can overlap your
hiliting because content is drawn later and “on top” of your graphics. �

Figure 5 shows a list which has this kind of routine installed. Whether the customization is
any improvement over the default is subject to debate.

Figure 5 Effects of customized hiliting

Customizing Row Expansion

The RowExpandProc callback can only be installed in a disclosure list. It enables you to
add child rows on the fly when the user toggles a row’s disclosure triangle down. Also,
you can delete rows on the fly when a row is collapsed. This may be desirable if you need
a large multilevel list and don’t want to take an inordinate amount of time setting it up.
You can add only the visible rows when creating the list, then display child rows on
demand.

C h a p t e r 1 : B l u g s A P I

17

� WARNING
Adding rows on the fly in response to expansion is a tricky business, especially if the user
option-clicks the disclosure triangle and thus recursively expands rows. This can tie up the
machine for quite a while. If you don’t know in advance how many disclosure levels deep
the list may become, this might not be your best strategy. (Expanding rows outside of a
tight loop would invite more reentrancy problems, however.) �

Enabling Secondary Sorting

This is not so much a customization as a way to get Blugs to do something it normally
cannot. When Blugs sorts a list, it uses the information in a single column. If you wish
Blugs to resolve sorting ambiguities based on another column, supply a
SecondarySortColumnProc callback that calculates which column to use, based on the
primary sort column.

Example

// My table has 3 columns; all are sortable.
// Prefer to use column 1 as the secondary column,
// but if 1 is primary, use 2 as secondary.
pascal UInt16 MySecondarySortColumnProc(UInt16 inPrimaryColumn)
{

UInt16 secondaryColumn;

if (inPrimaryColumn == 1) secondaryColumn = 2;
else secondaryColumn = 1;
return secondaryColumn;

}

Responding to Notifications

Blugs 1.1 begins to support better reporting of user interation. Following in the footsteps of
DataBrowser, you can install a notification callback to get information about user
interaction as it happens. Supply a BLNotificationProc to a list, and it will be called
when events of possible interest occur.

Blugs and Themes

We have tried to make Blugs as compatible with Appearance and Kaleidoscope Themes as
possible. This entails calling Appearance Manager routines to draw UI primitives when
such routines are available. Figure 6 shows a Blugs list running under a third-party Theme
(Paper 2.0.1 by Eric Lob).

C h a p t e r 1 : B l u g s A P I

18

Figure 6 Blugs under a custom Theme

Currently, the only problem area is with DrawThemeButton disclosure triangles: Blugs is
not set up to easily draw the portion of the cell that needs to be erased by the
ThemeEraseProc callback when the triangle is toggled. When you have a custom
background or hilite proc installed, in general you should try to leave the background
color or pattern set so that when DrawThemeButton calls EraseRect (which is
apparently unavoidable), your color will be applied in the rectangle surrounding the
disclosure triangle.

Patterned Themes can interfere with TextEdit hiliting. Read the section “Appearance
Themes and TextEdit” on page 124.

C h a p t e r 1 : B l u g s A P I

19

Blugs Reference

This reference section details the portions of Blugs’ public interface that are used by
applications to manage Blugs lists. For details on the portions of the interface that apply to
content handlers, see Chapter 2.

Types and Constants

This section describes the data types and constants provided by Blugs. They are extracted
from Blugs.h.

Global Settings Flags

When you call BLEnter you pass blNoSettings or one or more of these OR-combined
flags, to control how Blugs allocates GWorld memory. You can change this setting with
BLSettings.

enum
{

blNoSettings = 0,
blTempGWorlds = 0x00000001,
blMax16BitGWorlds = 0x00000002,
blMax8BitGWorlds = 0x00000004,
blDumpGWorldsOnHide = 0x00000008

};

Constant descriptions
blNoSettings Use none of these flags.
blTempGWorlds Blugs uses temporary memory when creating

GWorlds for lists. Ignored under OS X.
blMax16BitGWorlds Use 16 as the depth for calls to NewGWorld and

UpdateGWorld. Overrides blMax8BitGWorlds.
blMax8BitGWorlds Use 8 as the depth for calls to NewGWorld and

UpdateGWorld. Under Aqua, if this bit is set,
Blugs also sets blMax16BitGWorlds. This is
because the Appearance Manager apparently
cannot correctly execute DrawThemeButton in
an 8-bit GWorld.

blDumpGWorldsOnHide Blugs only allocates a GWorld for a list when the
list is visible. When it is hidden, the GWorld is
disposed. The world is allocated when the list is
made visible.

Environment Flags

When you call BLEnter Blugs calls Gestalt a number of times to find out about the Mac
OS environment. You can call BLEnvironment to retrieve these values.

enum
{

C h a p t e r 1 : B l u g s A P I

20

blInitialized = 1 << 0,
blHasAppearance = 1 << 1,
blHasAqua = 1 << 2,
blHasDragMgr = 1 << 3,
blHasTranslucentDrags = 1 << 4,
blHasControlMgr2 = 1 << 5

};

Constant descriptions
blInitialized Blugs is initialized.
blHasAppearance Appearance Manager is present.
blHasAqua Running under Aqua on OS X.
blHasDragMgr Drag Manager is present.
blHasTranslucentDrags Drag Manager 7.5 is present.
blHasControlMgr2 Control Manager 2 is present (Mac OS 8.5 and

later).

List Flags

When you create a list by means of BLNew you pass an inListFlags parameter. You
derive this 32-bit number by ORing zero or more of the following constants. (You can add
them, but logical OR is safer in case you repeat a constant.) You also use these features
when storing a list in a 'LiSt' resource.

enum
{

blResizableHeight = 0x00000001,
blResizableWidth = 0x00000002,
blHorizontalScroll = 0x00000004,
blVerticalScroll = 0x00000008,
blLiveScroll = 0x00000010,
blSmallScroll = 0x00000020,
blAutodraw = 0x00000040,
blHasGrow = 0x00000080,
blDrawGrow = 0x00000100,
blCanFocus = 0x00000200,
blVisible = 0x00000400,
blActive = 0x00000800,
blInlineEditOnClick = 0x00001000,
blDrawColumnBorders = 0x00002000,
blDrawRowBorders = 0x00004000,
blDisclosure = 0x00008000,
blBorderMetrics = 0x00010000,
blDrawBorder = 0x00020000,
blSortable = 0x00040000,
blDrawSortButton = 0x00080000,
blTable = 0x00100000,
blOnlyOne = 0x00200000,
blUseSense = 0x00400000,
blNoExtend = 0x00800000,
blNoDisjoint = 0x01000000

};

Constant descriptions

C h a p t e r 1 : B l u g s A P I

21

blResizableHeight The user can resize a row by clicking and
dragging the top or bottom of a title in the vertical
title bar. By default only your application can
change row heights.

blResizableWidth The user can resize a column by clicking and
dragging the left or right edge of a title in the
horizontal title bar. By default only your
application can change column widths.

blHorizontalScroll Blugs creates a horizontal scroll bar in the list.
blVerticalScroll Blugs creates a vertical scroll bar in the list.
blLiveScroll Dragging the scroll bar indicator scrolls the cells

and titles. By default Blugs calls the Control
Manager to draw a ghosted or outlined indicator
and only scrolls when the mouse button is
released.

blSmallScroll The list is in a utility window. Blugs uses 11-pixel
scroll bars instead of the the more common 16-
pixel ones.

blAutodraw Any changes made to the list cause the onscreen
representation to be updated. It is useful to
temporarily disable this feature when you have a
number of changes to make and wish to update
only once. You can also keep this feature turned
off for a list whose host window is not visible.

blHasGrow Blugs makes sure there is room for a grow box
under the vertical scroll bar and/or to the right of
the horizontal scroll bar.

blDrawGrow Blugs draws a grow or no-grow box. You should
set this flag only if the list does not extend to the
window frame or if there is no Appearance
Manager or Window Manager grow box. If
blHasGrow is set, Blugs draws a grow box. If
blHasGrow is clear, Blugs draws a no-grow box.

blCanFocus The list can receive keyboard focus and thus be
drawn surrounded by a focus ring.

blVisible The list is drawn onscreen.
blActive Blugs draws list contents in an active state. If this

flag is clear, contents are drawn as inactive
(dimmed).

blInlineEditOnClick When the user clicks in the text region of an
editable cell, Blugs starts an inline edit session
after a suitable pause. If this flag is clear, only the
host application can start an inline edit session,
for example, by calling BLBeginInlineEdit
(see page 67).

blDrawColumnBorders Blugs draws a light-colored 1-pixel line to the far
right of each column.

blDrawRowBorders Blugs draws a separator line as it does for column
borders, only at the bottom of each row.

blDisclosure The list allows rows to contain other rows in a
hierarchy. Blugs draws a disclosure triangle in
any row that contains other rows and uses
indentation to show which rows are contained in
others.

blBorderMetrics Truncates title bevel buttons by 1 pixel on the left
and/or top. This way the scroll bar ends can be
overlapped by a list border or window border
without an ugly gutter between the border and

C h a p t e r 1 : B l u g s A P I

22

the button. (Blugs draws the button as though it
were 1 pixel larger so the dark border is clipped
out.) Automatically set if blDrawBorder is set.

blDrawBorder Blugs draws a 1-pixel black rectangle (pre-
Appearance), or an Appearance Manager list
frame, around the list. The list border lies outside
the list’s bounding rectangle by a maximum of 3
pixels.

blSortable The arrangement of rows can be modified by
sorting by cell contents. This feature is only valid
if the blTable flag (see below) is set.

blDrawSortButton Blugs draws a bevel button with an icon
representing the current sort state (unsorted,
sorted low-to-high, or sorted high-to-low) in the
upper right corner of the list, above the vertical
scroll bar. This feature is only valid if the
blSortable flag (see above) is set and there is a
vertical scroll bar. The sort button is always blank
and inert under Aqua, and in a non-sortable list.

blTable The list is a table, meaning that each column has a
single content type for all cells in that column.
Changing a cell’s type changes the type of all cells
in that column. By default a list is a spreadsheet,
in which each cell can have its own content type.

blOnlyOne A maximum of one cell at a time can be selected.
blUseSense Shift-clicking a cell toggles its selection status. By

default, shift-clicking a selected cell has no effect.
blNoExtend Shift-clicking does not select intervening cells.
blNoDisjoint Only contiguous ranges of cells can be selected.

Ignored if blOnlyOne (see above) is set.

Drag Flags

When you call BLNew you pass an inDragFlags parameter to indicate the list’s behavior
with respect to the Drag Manager. You derive this number by ORing zero or more of the
following constants. You also use these features when storing a list in a 'LiSt' resource.

enum
{

blCanStartDrags = 0x0001,
blAllowDragsOnlyToSelf = 0x0002,
blImmediateDrag = 0x0004,
blReceiveDrags = 0x0008,
blReceiveDragsFromSelf = 0x0010,
blReceiveDragsOnlyFromSelf = 0x0020

};

Constant descriptions
blCanStartDrags Cells can be dragged.
blAllowDragsOnlyToSelf Cells can only be dragged within a list. They

cannot be dragged outside.
blImmediateDrag Click and drag in a single gesture.
blReceiveDrags The list can receive any valid drag.
blReceiveDragsFromSelf The list can receive drags that originated within it.

C h a p t e r 1 : B l u g s A P I

23

blReceiveDragOnlyFromSelf The list cannot receive drags from any source
other than itself.

Row Data Flags

These flags are used to encode a row’s properties. You set a row’s flags when you encode a
list in a 'LiSt' resource and create data entries for individual rows. You can use the
BLSetRowFlags routine to alter the properties.

enum
{

blRowHasChildren = 0x0001,
blRowIsExpanded = 0x0002,
blRowIsTitleRow = 0x0004,
blRowDrawBorder = 0x0008,
blRowMarkedForMovement = 0x0010

};

Constant Descriptions
blRowHasChildren The row has a disclosure triangle and zero or

more children. Ignored if the blDisclosure list
flag is clear.

blRowIsExpanded The disclosure triangle points down. Ignored if
the blRowHasChildren flag is clear, or if the
blDisclosure list flag is clear.

blRowIsTitleRow The row consists of a single cell that extends the
full list width.

blRowDrawBorder Draw a border at the bottom of this row.
blRowMarkedForMovement Row will be moved in next call to

BLMoveMarkedRows. Generally you will only
use this flag in BLSetRowFlags; it doesn't make
much sense to use it in a 'LiSt' resource,
although you can if you want.

Column Data Flags

These flags are used to encode a column’s properties. You set a column’s flags when you
encode a list in a 'LiSt' resource and create data entries for individual columns. You can
use the BLSetColumnFlags routine to alter the properties.

enum
{

blColumnCantSelect = 0x0001,
blColumnDrawBorder = 0x0002

};

Constant Descriptions
blColumnCantSelect The user can’t select cells in this column.
blColumnDrawBorder Draw a border to the right of this column.

C h a p t e r 1 : B l u g s A P I

24

Title Bar Flags

When you create a title bar with BLNewTitleBar you pass an inFlags parameter to
describe the bar’s features and capabilities. You derive this number by ORing zero or more
of the following constants. These flags are also used to encode title bar data in a 'LiSt'
resource.

enum
{

blTitlesSelectable = 0x0001,
blTitlesReorderable = 0x0002,
blTitlesResizableThickness = 0x0004,
blTitlesOneContentType = 0x0008,
blTitlesPinToRight = 0x0010

};

Constant Descriptions
blTitlesSelectable Title bevel buttons can be clicked and selected by

the user. When this feature is set, the bevel
buttons have radio button behavior. By default
titles cannot be selected.

blTitlesReorderable The titles can be drag-rearranged. When the user
drags a title, the row or column is moved to a new
location. If this flag is clear, titles cannot be
dragged.

blTitlesResizableThickness The user can drag-resize the title in its typically
“shorter” dimension, changing its thickness. This
means changing the height of the horizontal title
bar, and the width of the vertical bar. If this flag is
set, the cursor automatically changes to indicate
that drag-resizing is possible when the cursor is
over the title edge that can be dragged. This flag is
ignored for the horizontal title bar under Aqua.
The kThemeListHeaderButton
ThemeButtonKind can only be drawn 20 pixels
thick.

blTitlesOneContentType For title bars this is the equivalent of the blTitle
list flag (see above). When set, all titles in the title
bar share the same content type. If you change a
title’s content type, you change the content type
for all titles in that bar.

blTitlesPinToRight (Horizontal title bar only) Blugs tries to keep the
rightmost column aligned with the right edge of
the list (while still respecting column minimum
width). User cannot resize the last column.

Widget Flags

These flags define widget behavior.

enum
{

blWidgetInert = 0x0001,
blWidgetOn = 0x0002,
blWidgetSticky = 0x0004,

C h a p t e r 1 : B l u g s A P I

25

blWidgetToggles = 0x0008,
blWidgetRadioGroup = 0x0010

};

Constant Descriptions
blWidgetInert Widget does not interact with user.
blWidgetOn Widget placard is drawn pressed.
blWidgetSticky Widget stays on when pressed.
blWidgetToggles If the widget is on, pressing it turns it off. Ignored

if blWidgetSticky is not set.
blWidgetRadioGroup All widgets with this flag set are part of a radio

group. Ignored if blWidgetSticky is not set.

Part Codes

Certain Blugs routines refer to specific portions of a list. You will probably not need to use
all or even most of these constants; we list them here for completeness. (Blugs uses all of
them internally.)

typedef ControlPartCode BLPart;
enum
{

blNoPart = 0,
blCellPart = 256,
blCellRegionPart,
blBottomRightBlankPart,
blRightBlankPart,
blBottomBlankPart,
blHScrollPart,
blVScrollPart,
blHTitleBarTitlePart,
blHTitleBarFillerPart,
blVTitleBarTitlePart,
blVTitleBarFillerPart,
blTopLeftPart,
blSortButtonPart,
blGrowBoxPart,
blInlineEditPart,
blDisclosureTrianglePart,
blWidgetPart

};

Constant Descriptions
blNoPart No part of the list.
blCellPart Some part of a cell.
blCellRegionPart A cell’s content region. This is the content

handler-defined region which contains the cell’s
content; it is used for hiliting and hit testing. A
cell may or may not not have a content region.

blBottomRightBlankPart A portion of the view rectangle below and to the
right of all cells.

blRightBlankPart A portion of the view rectangle to the right of (but
not below) all cells.

blBottomBlankPart A portion of the view rectangle below (but not to
the right of) all cells.

C h a p t e r 1 : B l u g s A P I

26

blHScrollPart The horizontal scroll bar.
blVScrollPart The vertical scroll bar.
blHTitleBarTitlePart A title in the horizontal title bar.
blHTitleBarFillerPart In the horizontal title bar, but not in any title.
blVTitleBarTitlePart A title in the vertical title bar.
blVTitleBarFillerPart In the vertical title bar, but not in any title.
blTopLeftPart The rectangle where the vertical and horizontal

title bars meet.
blSortButtonPart The sort button in the list’s upper right corner.
blGrowBoxPart The grow (or no-grow) box drawn below the

vertical scroll bar and to the right of the horizontal
scroll bar.

blInlineEditPart A cell’s inline edit session/rectangle.
blDisclosureTrianglePart A cell’s disclosure triangle.
blWidgetPart A placard in line with a scroll bar.

Title Zones

BLHitTest reports on a subpart when the hit is in a title bar. These title zones are portions
of the title bar very close to the edges, where the user may drag-resize. When the cursor is
inside one of these zones, BLIdle changes the cursor to indicate drag-resizing is possible.

typedef UInt8 BLTitleZone;
enum
{

blNotInZone,
blZoneLeft,
blZoneRight,
blZoneTop,
blZoneBottom

};

Constant Descriptions
blNotInZone The cursor is not in a zone (not near an edge).
blZoneLeft The area to the left of a title or filler.
blZoneRight The area to the right of a title or filler.
blZoneTop The area to the top of a title or filler.
blZoneBottom The area to the bottom of a title or filler.

Hit Test Record

BLHitTest uses this record to specify a part, its coordinates, its rectangle, and in some
cases its subparts.

typedef struct
{

BLPart part;
BLCell cell;
Rect rect;
union
{

ControlPartCode controlPart;
BLTitleZone zone;

} u;
};

C h a p t e r 1 : B l u g s A P I

27

Field Descriptions
part The object hit.
cell The object coordinates.
rect The object bounds.
u.controlPart For scroll bars, the control (sub)part.
u.zone For title bars, the cursor-change zone.

User-Defined Routines

These are the procedure pointer types for the callbacks defined by the Blugs API. Most of
them are used in the prototypes for the callback registration functions listed in the section
“Registering User-Defined Routines” on page 96.

typedef pascal void
(*BLBackgroundProcPtr) (Boolean inIsSortColumn,

BLCell inCell,
const Rect* inRect,
BlugsRef inList);

typedef pascal Boolean
(*BLBevelButtonProcPtr)(BLPart inPart,

UInt16 inTitle,
const Rect* inRect,
ThemeDrawState inState,
ThemeButtonValue inValue,
BlugsRef inList);

typedef pascal void
(*BLBorderProcPtr)(Boolean inDrawRowBorder,

Boolean inDrawColumnBorder,
BLCell inCell,
const Rect* inRect,
BlugsRef inList);

typedef pascal void
(*BLFlattenProcPtr)(BLCell inCell,

OSType* outFlavor,
UInt32* ioDataSize,
void* outData,
BlugsRef inList);

typedef pascal void
(*BLHiliteProcPtr)(const Rect* inRect,

BlugsRef inList);

typedef pascal void
(*BLNotificationProcPtr)(BLNotificationMessage inMessage,

BLNotificationCommand inCommand,
BLPart inPart,
BLCell inCell,
BlugsRef inList);

typedef pascal void
(*BLRowExpandProcPtr)(Boolean inExpanding,

UInt16 inRow,

C h a p t e r 1 : B l u g s A P I

28

BlugsRef inList);

typedef pascal UInt16
(*BLSecondarySortColumnProcPtr)(UInt16 inPrimaryColumn,

BlugsRef inList);

typedef pascal OSErr
(*BLPreDragProcPtr)(DragReference inDragRef,

GWorldPtr inDragGWorld,
RgnHandle inDragRgn,
EventRecord* inEvent,
BlugsRef inList);

typedef pascal OSErr
(*BLDragDataProcPtr)(DragReference inDragRef,

DragItemRef inItem,
BLCell inCell,
BlugsRef inList);

typedef pascal OSErr
(*BLDropValidationProcPtr)(DragReference inDragRef,

UInt16 inUnderThisRow,
UInt16 inDisclosureLevel,
BlugsRef inList);

typedef pascal void
(*BLDropProcPtr)(DragReference inDragRef,

UInt16 inUnderThisRow,
UInt16 inDisclosureLevel,
BlugsRef inList);

typedef pascal void
(*BLPostDragProcPtr)(DragReference inDragRef,

BlugsRef inList);

Type Descriptions
BLBackgroundProcPtr A routine that draws cell backgrounds. See

MyBackgroundProc on page 103.
BLBevelButtonProcPtr A routine that draws bevel buttons. See

MyBevelButtonProc on page 103.
BLBorderProcPtr A routine that draws cell borders. See

MyBorderProc on page 104.
BLFlattenProcPtr A routine that saves cell or title data. See

MyFlattenProc on page 105.
BLHiliteProcPtr A routine that draws selection hiliting for cells.

See MyHiliteProc on page 105.
BLNotificationProcPtr A routine that responds to notifications about

user activity. See MyNotificationProc on page
106.

BLRowExpandProcPtr A routine that inserts or deletes rows on the fly in
disclosure lists when a parent row is expanded or
collapsed. See MyRowExpandProc on page 106.

BLSecondarySortColumnProcPtr A routine that determines a column for secondary
sorting based on the primary column. See
MySecondarySortColumnProc on page 107.

BLPreDragProcPtr A routine that inspects a drag before it begins. See
MyPreDragProc on page 107.

C h a p t e r 1 : B l u g s A P I

29

BLDragDataProcPtr A routine that adds data to a drag. See
MyDragDataProc on page 108.

BLDropValidationProcPtr A routine that determines whether a drop location
in a list is valid. See MyDropValidationProc on
page 108.

BLDropProcPtr A routine that inserts dropped data in a list. See
MyDropProc on page 109.

BLPostDragProcPtr A routine that inspects a drag before it ends. See
MyPostDragProc on page 109.

Callbacks Record

Use this structure to get and set list callback routines en masse. Pass a pointer to this record
as a parameter to BLGetCallbacks and BLSetCallbacks. This is the more
DataBrowser-like way of manipulating callbacks.

typedef struct
{

BLBackgroundProcPtr backgroundProc;
BLBevelButtonProcPtr bevelButtonProc;
BLBorderProcPtr borderProc;
BLHiliteProcPtr hiliteProc;
BLNotificationProcPtr notificationProc;
BLRowExpandProcPtr rowExpandProc;
BLSecondarySortColumnProcPtr secondaryProc;
BLPreDragProcPtr preDragProc;
BLDragDataProcPtr dragDataProc;
BLDropValidationProcPtr dropValidationProc;
BLDropProcPtr dropProc;
BLPostDragProcPtr postDragProc;

} BLCallbacksRec, *BLCallbacksPtr;

Disclosure Option

When you call BLAddRows with a list that can have disclosure triangles (that is,
blDisclosure list flag is set when the list is created), you can partially specify the
disclosure level of the added rows relative to the previous row.

typedef UInt8 BLDisclosureOption;
enum
{

blDisclosureOptionRoot,
blDisclosureOptionSame,
blDisclosureOptionChild

};

Constant Descriptions
blDisclosureOptionRoot Add rows at the shallowest disclosure level: level

zero. The first row of a list is required to be at
level zero.

blDisclosureOptionSame Add rows at the same level as the previous row. If
there is no previous row, the rows must be at level
zero.

C h a p t e r 1 : B l u g s A P I

30

blDisclosureOptionChild Add rows as children of the previous row. If there
is no previous row, the rows are assigned to level
zero.

Sort State

Use these flags when getting and setting a list’s sort status.

typedef UInt8 BLSortState;
enum
{

blSortStateUnsorted = 0,
blSortStateSorted = 0x01,
blSortStateLargeToSmall = 0x02

};

Constant Descriptions
blSortStateUnsorted The list is not (to be) sorted.
blSortStateSorted The list is (to be) sorted.
blSortStateLargeToSmall The list is (to be) sorted in reverse-alphabetical or

large-to-small order.

Key Result

BLKey returns a result code of type BLKeyResult that gives an indication of what
happened in the course of processing a keyboard event.

typedef UInt16 BLKeyResult;
enum
{

blNothingHappenedKeyResult,
blErrorKeyResult,
blArrowKeyResult,
blNavigationKeyResult,
blSearchKeyResult,
blSentToInlineEditKeyResult,
blInlineEditBegunKeyResult,
blInlineEditEndedKeyResult

};

Constant Descriptions
blNothingHappenedKeyResult The key could not be processed. For example,

most command-character combinations should be
handled by the Menu Manager. Blugs ignores
them.

blErrorKeyResult An internal error occurred.
blArrowKeyResult An arrow key (with or without modifiers) was

processed.
blNavigationKeyResult A navigation key (home, page up, etc.) was

processed.
blSearchKeyResult The key was added to the list’s internal search

string and the list was searched. Applies to sorted
tables only.

C h a p t e r 1 : B l u g s A P I

31

blSentToInlineEditKeyResult The key was sent to the inline session. (Whether
the inline edit handler did anything with the key
is not reported.)

blInlineEditBegunKeyResult Return or enter key started an inline session.
blInlineEditEndedKeyResult Return or enter key ended an inline session.

Click Result

BLClick returns a result code of type BLClickResult that gives an indication of what
happened in the course of processing a mouse event. This enumeration will grow in future
versions of Blugs.

typedef UInt16 BLClickResult;
enum
{

blNothingHappenedClickResult,
blCellRgnSingleClickResult,
blCellRgnDoubleClickResult,
blCellRgnTripleClickResult,
blGrowBoxClickResult

};

Constant Descriptions
blNothingHappenedClickResult Miscellaneous mouse-down processing.
blCellRgnSingleClickResult A cell was single-clicked.
blCellRgnDoubleClickResult A cell was double-clicked.
blCellRgnTripleClickResult A cell was triple-clicked.
blGrowBoxClickResult The click was in the list’s grow box.

Get Select Method

Pass one of these constants to BLGetSelect to indicate where and how you want to search
for a selected cell.

typedef UInt8 BLGetSelectMethod;
enum
{

blCellGetSelectMethod,
blRowGetSelectMethod,
blColumnGetSelectMethod

};

Constant Descriptions
blCellGetSelectMethod Search all cells starting with ioCell.
blRowGetSelectMethod Search in ioCell->row starting with ioCell-

>col.
blColumnGetSelectMethod Search in ioCell->col starting with ioCell-

>row.

Notification Messages

Blugs calls your notification callback, if you have installed one, with a message indicating
what happened, and possibly a notification command issued by a content handler.

C h a p t e r 1 : B l u g s A P I

32

enum
{

blInlineEditBeganNotificationMsg = 'InlB',
blInlineEditEndedNotificationMsg = 'InlE',
blWidgetClickedNotificationMsg = 'WidC'

};

Constant Description
blInlineEditBeganNotificationMsg

An inline edit session began in the specified cell.
blInlineEditEndedNotificationMsg

An inline edit session ended in the specified cell.
blWidgetClickedNotificationMsg

Mouse down and up in non-inert widget, and/or
widget content handler intercepted the click.

Error and Result Codes

Blugs provides its own error and result codes for those rare situations when there is no
Apple-defined constant of an appropriate meaning. Numerical values are in the range
Apple reserves for developers (1000-9999 inclusive). The BLSearch function returns an
OSErr result code in the case of a successful or partially successful search. Blugs-defined
codes indicate the degree of success.

enum
{

blSearchResultExactMatch = noErr,
blSearchResultNextCell = 1000,
blSearchResultPrevCell,

};

Constant Descriptions
blSearchResultExactMatch Search data was matched exactly.
blSearchResultNextCell Inexact match: BLSearch returns the next cell

greater than the search data.
blSearchResultPrevCell Inexact match: there is no cell greater than the

search data. BLSearch returns the previous cell
less than the search data.

Blugs Cell

Blugs uses the BLCell data type to refer to cells, titles, and the top left corner pseudo-title.
It is equivalent to the Mac OS Point structure, except that its fields are unsigned integers.
When the row and col fields are nonzero, the structure is interpreted as a cell. If one of the
fields contains zero, it is interpreted as a title. If both are zero, it is interpreted as the top
left corner. In some cases it is not appropriate for a BLCell to refer to titles: selection
routines like BLSelectCell cannot be used with titles because cells and titles have
different selection mechanisms. In such cases input with row or col containing zero will
be rejected; if an error code is returned typically it will be inputOutOfBounds.

In some cases BLCell is also used to indicate the coordinates of a scroll bar widget. In all
such cases (such as in a BLHitTestRec) there will be a BLPart field or parameter clearly
indicating that the coordinates refer to a widget. In the horizontal scroll bar, a widget’s

C h a p t e r 1 : B l u g s A P I

33

coordinates have a row index of zero and a one-based column index counting from the left.
In the vertical scroll bar, a widget’s coordinates have a column index of zero and a one-
based row index counting from the top.

In the future, the preferred method for using BLCell will always be in conjunction with a
BLPart code.

typedef struct
{

UInt16 row;
UInt16 col;

} BLCell;

Field descriptions
row The cell’s row number, or zero to indicate the

horizontal title bar.
col The cell’s column number, or zero to indicate the

vertical title bar.

Unique Identifiers

Blugs uses the BLUID data type to uniquely refer to rows and columns. The BLCellUID
type is similar to BLCell, except that it uses UIDs to refer to cells. UID values start at
0x00000000 00000001. The value 0x00000000 00000000 (equivalently, {0,0}) is
not valid: it refers to a nonexistent row or column.

typedef UnsignedWide BLUID;
typedef struct
{

BLUID rowID;
BLUID colID;

} BLCellUID;

Field descriptions
rowID The cell’s row UID.
colID The cell’s column UID.

Miscellaneous Types

Listed below are the remaining Blugs types. BLContentType is used when registering
content handlers. The two opaque reference types prevent the host application from
accessing Blugs’ internals. BlugsRef is used in almost every Blugs routine.
BLTitleBarRef is used with title bar routines.

typedef UInt16 BLContentType;
typedef struct OpaqueBLReference* BlugsRef;
typedef struct OpaqueBLTitleBarReference* BLTitleBarRef;

Type descriptions
BLContentType A number that corresponds to a content handler

routine. You assign this number when you
register a content handler with
BLRegisterContentHandler (see page 96).

BlugsRef An opaque reference to a Blugs list.
BLTitleBarRef An opaque reference to a Blugs title bar.

C h a p t e r 1 : B l u g s A P I

34

Blugs Routines

This section describes all routines in the Blugs API.

Initialization

Before you use Blugs you must call BLEnter to let Blugs initialize itself. When you are
finished with Blugs you can call BLExit but you usually don’t have to.

BLEnter

Initializes Blugs. You must call this before using any other Blugs routine.

OSErr BLEnter(void)

Call BLEnter before you use any other Blugs routines. This routine makes a number of
Gestalt checks to evaluate the runtime environment. It checks for and records the
availability of the Appearance Manager, Drag Manager, Control Manager, and 32-bit
GWorld capability. It then allocates a small hash table for storing content handler
information.

If 32-bit GWorlds are not available, BLEnter returns notInitErr. If memory is so
critically short that it cannot allocate the hash table, it returns memFullErr; in this case
your application is in serious memory trouble. If BLEnter returns an error, you must
make no further calls to Blugs.

RESULT CODES

notInitErr (-900) Minimum system requirements not met (needs 32-bit
GWorld capability). 68K only.

memFullErr (-108) Not enough memory.
noErr (0) No error.

BLExit

Deinitializes Blugs. Call this routine when finished with all Blugs lists.

void BLExit(void)

Call BLExit when your application is finished using Blugs. This routine releases certain
blocks of memory BLEnter allocated for globals; consequently the amount of free space in
your application heap will grow slightly after BLExit returns. This routine also
unregisters all content handlers. Be sure to call BLDispose on all existing lists before
calling BLExit.

If you need to use Blugs again after calling BLExit, you will need to reinitialize it by
calling BLEnter. Then you must call BLRegisterContentHandler for each handler
you need to use.

C h a p t e r 1 : B l u g s A P I

35

Your application does not need to call BLExit if it is in the process of shutting down.
When you application terminates, the Mac OS Memory Manager automatically releases the
memory occupied by Blugs’ globals, because this memory is always in your application’s
heap. You might want to call BLExit if your application is finished using Blugs but will
run for a while longer. If you are writing a plug-in that executes in a host application’s
heap, you may need to call BLExit when your plug-in terminates or is deinitialized. (For
Photoshop plug-in developers, you might call BLEnter when called with
filterSelectorPrepare and call BLExit when called with
filterSelectorFinish.) Check the host application’s plug-in API documentation to
determine your best memory management strategy.

Creating and Disposing of Lists

Use the BLNew function to create a list based on function parameters. Use BLLoad or
BLUnflatten to create a list based on resource data. Call BLDispose to dispose of a list
created with those functions. Call BLFlatten to save a list to the resource format.

BLNew

Creates a new list in a window.

BlugsRef BLNew(UInt16 inColumns, UInt16 inRows,
const Rect* inRect, Point inCellSize,
WindowRef inWindow, UInt32 inListFlags,
UInt16 inDragFlags)

inColumns The initial number of columns.

inRows The initial number of rows.

inRect The address of a rectangle, in coordinates local to inWindow,
within which cells, title bars, and scroll bars are drawn.

inCellSize A Mac OS Point whose horizontal component specifies the
default column width for this list. The vertical component
specifies the default height for rows. When rows and columns are
created, they are initialized to these values.

inWindow The window in which the list is to be created.

inListFlags A set of bit values which specify the list’s behavior. See the
enumeration “List Flags” on page 20 for a detailed description of
each flag bit.

inDragFlags A set of bit values which specify the list’s behavior as it applies to
the Drag Manager. See “Drag Flags” on page 22.

BLNew creates a list based on its parameters. If it fails to create the list (if there is not
enough free memory in the application heap, for example), it returns nil.

If the inListFlags bit blAutodraw is set, Blugs draws the list just before returning. For
this reason, you should not set this bit if you need to modify the list (add rows and
columns, for example) before it should be displayed.

C h a p t e r 1 : B l u g s A P I

36

If you wish to create a list and populate its cells using one function call, you can load a list
from a resource. See the next function, BLLoad.

BLLoad

Creates a new list in a window by loading the list’s data from a resource of type 'LiSt'.
This routine is especially useful when you know the initial list contents in advance.

BlugsRef BLLoad(SInt16 inResID, WindowRef inWindow)

inResID The ID of the 'LiSt' resource that contains the data for this list.

inWindow The window in which the list is to be created.

BLLoad creates a list based on information it loads from the specified 'LiSt' resource. It
is a simple wrapper for GetResource followed by BLUnflatten. Blugs assumes that the
resource is in the current resource file. If Blugs fails to create the list (if there is not enough
free memory in the application heap, or if the specified resource cannot be found), it
returns nil.

See the section “The 'LiSt' Resource” on page 109 , or the file Blugs.r, for details on
the resource structure.

BLFlatten

Saves a list to a handle.

OSErr BLFlatten(BLFlattenProcPtr inFlattenProc, Handle* outHandle,
BlugsRef inList)

inFlattenProc The address of a routine to save cell and title data, or nil.

outHandle On output, a handle to the flattened list.

inList The list to be flattened.

BLFlatten creates a handle to a block of memory in the same format as the 'LiSt'
resource. Your BLFlattenProcPtr callback is the means by which Blugs extracts cell and
title data. You can pass nil for inFlattenProc if you do not want to save cell or title
data.

See the section “The 'LiSt' Resource” on page 109 , or the file Blugs.r, for details on
the resource structure. See the section “MyFlattenProc” on page 105 for details on the
flatten procedure.

RESULT CODES

errDataSizeMismatch (-30591)
Flatten proc returned wrong size data (size mismatch
between invocations for a given cell or title).

memFullErr (-108) Not enough memory.
noErr (0) No error.

C h a p t e r 1 : B l u g s A P I

37

BLUnflatten

Creates a list from a handle in the 'LiSt' resource format.

BlugsRef BLUnflatten(Handle inHandle, WindowRef inWindow)

inHandle The data in 'LiSt' resource format that is to be made into a list.

inWindow The window in which the list is to be created.

BLUnflatten creates a list based on inHandle, which is assumed to be in the 'LiSt'
resource format. If Blugs fails to create the list (if there is not enough memory), it returns
nil.

See the section “The 'LiSt' Resource” on page 109 , or the file Blugs.r, for details on
the resource structure.

BLDispose

Deallocates all memory associated with a list.

void BLDispose(BlugsRef inList)

inList The list whose memory is deallocated.

BLDispose releases all memory allocated for a list. In the process of doing so it calls the
content handler for each cell and title and tells the handler to deinitialize the cell or title. It
then calls DisposeControl for its scroll bars if they exist. It then releases all memory
blocks that are part of the list’s internal structures.

If you have stored any memory handles or pointers in the list by means of the
BLSetUserData routine, be sure to recover these memory references and either save
them elsewhere or deallocate them. If you do not do so your application will suffer from a
memory leak. Blugs only deallocates memory it has itself allocated.

BLWindow

Returns a list’s host window.

WindowRef BLWindow(BlugsRef inList)

inList The list whose host is returned.

BLWindow returns the WindowRef originally passed to BLNew, BLLoad, or
BLUnflatten. This routine may be useful if you need window information, e.g., in a
Blugs notification or other type of callback where you are passed a BlugsRef.

C h a p t e r 1 : B l u g s A P I

38

Rows and Columns

You can use these routines to retrieve and alter the number of rows and columns in your
list, to rearrange rows and columns, and to alter row and column properties.

BLAddRows

Adds one or more rows to a list.

OSErr BLAddRows(BLDisclosureOption inOption, UInt16 inCount,
UInt16 inRow, BlugsRef inList)

inOption A constant specifying the disclosure level of the added rows in
relation to the previous row. Ignored if the list is not a disclosure
list. See the enumeration “Disclosure Option” on page 29.

inCount The number of rows to be added.

inRow The row number of the first added row.

inList The list to which rows are to be added.

This function inserts a number of rows equal to inCount, starting at the row whose
number is equal to the inRow parameter. If inRow is more than one greater than the
number of rows in the list, BLAddRows also adds the intervening rows. (For example, if a
list already contains two rows, and inCount = 1 and inRow = 4, BLAddRows adds two
rows.) If there is already a row at the inRow location, it (and any rows numbered higher
than it) are shifted to higher row numbers to make room.

Non-disclosure lists ignore the inOption parameter. But if the list is a disclosure list, and
inOption is blDisclosureOptionChild, rows are added as children to the previous
row. If the previous row does not have any children on entry, Blugs marks it as a parent
and subsequently draws it with a disclosure triangle. If inOption is
blDisclosureOptionSame, rows are added at the same disclosure level as the previous
one. If there is no previous row, the inOption parameter is treated as if it contained
blDisclosureOptionRoot, and all rows are added at the root level (disclosure level
zero).

If you pass zero in the inCount parameter, Blugs does nothing.

� WARNING
Blugs does not act like the List Manager when adding rows to the end of the list, when
inRow is more than one greater than the last row. The List Manager always honors the
count parameter, never adding more rows than count. Blugs, on the other hand, treats
the intervening rows as ‘padding’ and honors inRow. To clarify the difference: imagine a
list with one row. If you ask the List Manager to add one row at row number 32000, you
end up with two rows in the list. If you ask Blugs to do the same thing, you end up with
32000 rows. Blugs cheerfully adds row number 32000 and the intervening 31998 rows. �

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; can’t add that many rows.
nilHandleErr (-109) Bad list reference.
memFullErr (-108) Not enough memory to add rows.

C h a p t e r 1 : B l u g s A P I

39

noErr (0) No error.

BLAddColumns

Adds one or more columns to a list.

OSErr BLAddColumns(UInt16 inCount, UInt16 inColumn,
BlugsRef inList)

inCount The number of columns to be added.

inColumn The one-based index of the first added column.

inList The list to which columns are added.

This function inserts a number of columns equal to inCount, starting at the column whose
number is equal to inColumn. If the column specified by inColumn is more than one
greater than the number of columns in the list, BLAddColumns also adds the intervening
columns. (For example, if a list already contains two columns, and inCount = 1 and
inColumn = 4, BLAddColumns adds two columns: 3 and 4.)

If there is already a column at the inColumn location, it (and any columns numbered
higher than it) are shifted to make room for the new columns. If there is a representative
column, Blugs updates its number to reflect its new position.

If you pass zero in the inCount parameter, Blugs does nothing.

� WARNING
The comments above, on the difference between BLAddRows and the List Manager’s
LAddRow, apply to columns too. �

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column zero; can’t add that many columns.
nilHandleErr (-109) Bad list reference.
memFullErr (-108) Not enough memory to add columns.
noErr (0) No error.

BLDeleteRows

Deletes one or more rows from a list.

OSErr BLDeleteRows(UInt16 inCount, UInt16 inRow, BlugsRef inList)

inCount The number of rows to be deleted.

inRow The one-based number of the first deleted row.

inList The list from which rows are to be deleted.

C h a p t e r 1 : B l u g s A P I

40

This function deletes a number of rows equal to the inCount parameter, starting at
inRow. BLDeleteRows does not try to remove rows that do not exist. If inCount is zero,
all rows are deleted. In a disclosure list, all descendants of a deleted row are also deleted.
As a result, the number of rows actually deleted may be substantially greater than
inCount. Blugs deletes rows and their descendants until the actual number of rows
deleted is greater than or equal to inCount.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; nonexistent row.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLDeleteColumns

Deletes one or more columns from a list.

OSErr BLDeleteColumns(UInt16 inCount, UInt16 inColumn,
BlugsRef inList)

inCount The number of columns to be deleted.

inColumn The one-based number of the first deleted column.

inList The list from which columns are to be deleted.

This function deletes a number of columns equal to inCount, starting at inColumn.
BLDeleteColumns does not try to remove columns that do not exist. If inCount is zero,
all columns are deleted.

This function may delete the representative column if there is one. If this happens Blugs
does not try to introduce a new representative: there are no redirection effects until your
application chooses a new representative.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column zero; nonexistent column.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLMoveRows

Moves one or more rows to a different position and/or disclosure level.

OSErr BLMoveRows(UInt16 inCount, UInt16 inRow,
UInt16 inAfterThisRow, UInt16 inDisclosureLevel,
BlugsRef inList)

inCount The number of rows to be moved.

inRow The one-based number of the first moved row.

C h a p t e r 1 : B l u g s A P I

41

inAfterThisRow The one-based number of the row to be moved after.

inDisclosureLevel The new disclosure level for inRow.

inList The list in which rows are moved.

This function moves a number of rows equal to the inCount parameter, starting at inRow,
so inRow ends up directly below inAfterThisRow. If you can zero for
inAfterThisRow inRow moves to the top of the list. BLMoveRows does not try to move
rows that do not exist. In a disclosure list, all descendants of a moved row are also moved.
As a result, the number of rows actually moved may be substantially greater than
inCount. Blugs moves rows and their descendants until the actual number of rows moved
is greater than or equal to inCount. If you pass zero for inCount, or you are moving
inRow directly before, after, or into itself, there is no movement, although the disclosure
level may still change.

If inList is a disclosure list, inDisclosureLevel is taken into account. inRow is set to
the new disclosure level and all of its descendants are updated. BLMoveRows checks
inDisclosureLevel to make sure it does not violate the hierarchy already established
between inAfterThisRow and any subsequent rows. For example, if inAfterThisRow
has a child row, you cannot set inRow to the same disclosure level as inAfterThisRow
because inRow would intervene, breaking the hierarchy. In that case the only possible
target would be the same level as the child. If the disclosure level violates these hierarchy
constraints, BLMoveRows does nothing.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; nonexistent row; bad disclosure level.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLMoveMarkedRows

Moves rows that have their blRowMarkedForMovement flag set.

OSErr BLMoveMarkedRows(UInt16 inAfterThisRow,
UInt16 inDisclosureLevel,
BlugsRef inList)

inAfterThisRow The one-based number of the row to be moved after.

inDisclosureLevel The new disclosure level for each marked row.

inList The list in which rows are moved.

BLMoveMarkedRows finds each row that had its blRowMarkedForMovement flag bit set
by a previous call to BLSetRowFlags, moves that row (and its descendants) to the
position and disclosure level specified, and unmarks the row. In all other respects this
function is the same as BLMoveRows. You do not need to mark a row’s descendants for
movement unless you want them promoted up to inDisclosureLevel by this routine.

C h a p t e r 1 : B l u g s A P I

42

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; nonexistent row; bad disclosure level.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLMoveColumns

Moves one or more columns to a different position.

OSErr BLMoveColumns(UInt16 inCount, UInt16 inColumn,
UInt16 inAfterThisColumn, BlugsRef inList)

inCount The number of columns to be moved.

inColumn The one-based number of the first moved column.

inAfterThisColumn The one-based number of the column to be moved after.

inList The list in which columns are moved.

This function moves a number of columns equal to the inCount parameter, starting at
inColumn, so inColumn ends up directly below inAfterThisColumn. If you can zero
for inAfterThisColumn inColumn moves to the far left of the list. BLMoveColumns
does not try to move columns that do not exist. If you pass zero for inCount, or you are
moving inColumn directly before, after, or into itself, BLMoveColumns does nothing.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column zero; nonexistent column.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLCountRows

Returns the number of rows in a list.

UInt16 BLCountRows(BlugsRef inList)

inList The list whose rows are counted.

This function returns the number of rows in inList. Note that this count includes all
rows, even those that are not currently disclosed. This count does not include the
horizontal title bar.

C h a p t e r 1 : B l u g s A P I

43

BLCountColumns

Returns the number of columns in a list.

UInt16 BLCountColumns(BlugsRef inList)

inList The list whose columns are counted.

BLCountColumns returns the number of columns in inList. This count does not include
the vertical title bar.

BLGetRowFlags

Returns a row’s feature settings.

UInt16 BLGetRowFlags(UInt16 inRow, BlugsRef inList)

inRow The row whose flags are retrieved.

inList The list which contains the row.

This function returns the feature flags for inRow. If you pass a bad list reference, or if
inRow does not exist, BLGetRowFlags returns zero.

BLSetRowFlags

Changes a row’s feature flags.

OSErr BLSetRowFlags(UInt16 inRow, UInt16 inWhichFlags,
UInt16 inFlags, BlugsRef inList)

inRow The row whose feature flags are to be set.

inWhichFlags A mask in which flag bits to be changed are set.

inFlags The new set of flags.

inList The list which contains the row.

This function changes the row flags indicated by inWhichFlags to the settings in
inFlags. For each bit in the inWhichFlags mask parameter, if the bit is set then the
corresponding bit in the inFlags parameter is applied to the row. See the enumeration
“Row Data Flags” on page 23.

If you alter the value of the blRowIsExpanded flag, then Blugs calls BLExpandRow or
BLCollapseRow, with the inDeepExpand/inDeepCollapse parameter set to false.
Blugs evaluates the bits from low to high (same as order of enumeration), so the
blRowHasChildren bit is evaluated before blRowIsExpanded. If, by the time the
blRowIsExpanded bit is evaluated, blRowHasChildren is clear, then Blugs makes sure
blRowIsExpanded is also clear. In non-disclosure lists Blugs keeps clear any disclosure-
specific flags.

C h a p t e r 1 : B l u g s A P I

44

You cannot clear the blRowHasChildren bit as long as the row actually has children (that
is, if inRow+1 has a disclosure level greater than inRow). Blugs will not report an error in
this case, however. To remove parent status, you must first delete or promote the row’s
descendants.

Note
This function does not affect undocumented flags. All flag bits not documented here or in
the interface files are reserved or used internally. �

Note
This mechanism – using mask and flags parameters – is the same as that used by, for
example, the Collection Manager. It may save you application an extra call to
BLGetRowFlags. �

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; nonexistent row.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetColumnFlags

Returns a column’s feature settings.

UInt16 BLGetColumnFlags(UInt16 inColumn, BlugsRef inList)

inColumn The column whose flags are retrieved.

inList The list which contains the column.

This function returns the feature flags for inColumn. If you pass a bad list reference, or if
inColumn does not exist, BLGetColumnFlags returns zero.

BLSetColumnFlags

Changes a column’s feature flags.

OSErr BLSetColumnFlags(UInt16 inColumn, UInt16 inWhichFlags,
UInt16 inFlags, BlugsRef inList)

inColumn The column whose feature flags are to be set.

inWhichFlags A mask in which flag bits to be changed are set.

inFlags The new set of flags.

inList The list which contains the column.

This function changes the column flags indicated by inWhichFlags to the settings in
inFlags. For each bit in the inWhichFlags mask parameter, if the bit is set then the

C h a p t e r 1 : B l u g s A P I

45

corresponding bit in the inFlags parameter is applied to the row. See the enumeration
“Column Data Flags” on page 23.

If you set the blColumnCantSelect flag, then Blugs deselects all cells in the column,
provided the flag was not already set.

Note
This function does not affect undocumented flags. All flag bits not documented here or in
the interface files are reserved or used internally. �

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column zero; nonexistent column.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

Metrics

Use these routines to get information about the sizes of list elements, and to change sizes of
elements from their initial settings.

BLGetViewRect

Gets the rectangle containing a list’s cells.

OSErr BLGetViewRect(Rect* outRect, BlugsRef inList)

outRect On output, the list’s view rectangle.

inList The list whose view rectangle is retrieved.

BLGetViewRect returns a rectangle describing the area of the list which contains, or may
contain, cells. It is the scrollable area minus title bars. Scroll bars also lie outside the view
rectangle.

If you pass a bad list reference, outRect contains an empty rectangle on output.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetRect

Gets a list’s bounding rectangle.

OSErr BLGetRect(Rect* outRect, BlugsRef inList)

outRect On output, the list’s bounding rectangle.

C h a p t e r 1 : B l u g s A P I

46

inList The list whose rectangle is retrieved.

BLGetRect returns a rectangle describing the entire area of a list. This rectangle includes
scroll bars and title bars. The only visual elements not contained within the rectangle are
the focus and list border, if present. Typically neither of these elements extend more than
three pixels beyond the edge of the list.

If you pass a bad list reference, outRect contains an empty rectangle on output.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetRect

Sets a list’s bounding rectangle.

OSErr BLSetRect(const Rect* inRect, BlugsRef inList)

inRect The address of a rectangle containing the new list bounds,
expressed in coordinates local to the list’s host window.

inList The list whose bounding rectangle is to be set.

BLSetRect changes the rectangle occupied by the list to the one specified in inRect. This
rectangle encloses all cells, title bars, and scroll bars. The only visual interface elements not
contained within this rectangle are the list border and the keyboard focus, if they exist.
Both of these elements are drawn outside the list rectangle, as is consistent with other Mac
OS interface elements under the Appearance Manager.

This routine changes the rectangle occupied by cells and preserves the respective width
and height of the vertical and horizontal title bars. It resizes scroll bars to conform to the
new rectangle and redraws them.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLCellRect

Gets a cell or title’s bounding rectangle.

OSErr BLCellRect(BLCell inCell, Rect* outRect, BlugsRef inList)

inCell The cell or title whose bounding rectangle is retrieved.

outRect On output, the cell or title bounds.

C h a p t e r 1 : B l u g s A P I

47

inList The list that contains the cell or title.

BLCellRect retrieves the bounding rectangle of inCell, in local coordinates. If the row
and col fields of inCell are nonzero, it is interpreted as a cell. If one of the fields contains
zero, it is interpreted as a title. If both are zero, it is interpreted as the top left corner.

If the cell is scrolled so far out of view that it would overflow the 16-bit Rect fields, or if
inCell does not exist, or you pass a bad list reference, BLCellRect returns an error code
and sets all outRect fields to zero.

RESULT CODES

invalidRect (-2036) Cell is scrolled too far out of view: degenerate rectangle.
notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Nonexistent cell or title.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetMinimumSize

Gets a list’s smallest legal size.

void BLGetMinimumSize(UInt16* outMinWidth, UInt16* outMinHeight,
BlugsRef inList)

outMinWidth On output, the smallest possible list width.

outMinHeight On output, the smallest possible list height.

inList The list whose minimum size is to be determined.

BLGetMinimumSize determines the absolute minimum width and height to which a list
can be reduced and still be nominally functional. The starting size is 16 pixels (subject to
change in future versions); Blugs then adds the appropriate title bars’ thickness and
enough space for the scroll bar thumb and scroll buttons to display without overlap. You
should call this procedure when calculating the parameters to GrowWindow if the window
has a list that grows and shrinks with it.

BLSetRowHeight

Sets a row’s height.

OSErr BLSetRowHeight(UInt16 inRow, UInt16 inHeight,
BlugsRef inList)

inRow The row to resize.

inHeight The new height in pixels.

inList The list that contains the row.

C h a p t e r 1 : B l u g s A P I

48

BLSetRowHeight changes the specified row’s vertical measure to inHeight pixels. Note
that in the current version of Blugs, you cannot set the height of a row to zero. If you try to
do so, this function does nothing and returns paramErr.

If you pass zero in inRow, Blugs interprets it as the horizontal title bar. If there is no
horizontal title bar, BLSetRowHeight returns inputOutOfBounds.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row does not exist, no horizontal title bar.
nilHandleErr (-109) Bad list reference.
paramErr (-50) New height was zero.
noErr (0) No error.

BLSetColumnWidth

Sets a column’s width.

OSErr BLSetColumnWidth(UInt16 inColumn, UInt16 inWidth,
BlugsRef inList)

inColumn The column to resize.

inWidth The new width in pixels.

inList The list that contains the column.

BLSetColumnWidth changes the specified column’s horizontal measure to inWidth
pixels. Note that in the current version of Blugs, you cannot set the width of a column to
zero. If you try to do so, this function does nothing and returns paramErr.

If you pass zero for inColumn, Blugs interprets it as the vertical title bar. If there is no
vertical title bar, BLSetColumnWidth returns inputOutOfBounds.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column does not exist, no vertical title bar.
nilHandleErr (-109) Bad list reference.
paramErr (-50) New width was zero.
noErr (0) No error.

BLSetDefaultCellSize

Sets the size for rows and columns subsequently added to a list.

OSErr BLSetDefaultCellSize(Point inSize, BlugsRef inList)

inSize The new default size in pixels.

inList The list whose default cell size is set.

C h a p t e r 1 : B l u g s A P I

49

BLSetDefaultCellSize changes the size for rows and columns subsequently added to
the list. If either of the values inSize.h or inSize.v is zero, Blugs ignores that value.
This routine is useful when your application may be deployed on Mac OS X, where
typically larger fonts may require additional row height. You can create a list (passing one
value to BLNew) and then call BLSetDefaultCellSize to set another value if necessary,
before adding any rows/columns.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetIndent

Gets a list’s indent.

UInt8 BLGetIndent(BlugsRef inList)

inList The list whose indent is retrieved.

BLGetIndent returns the pixel value of the current indent setting. When a list is created
via BLNew or BLLoad, indent is initialized to the default value (currently defined as 12
pixels). You can use the following routine, BLSetIndent, to change this setting.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetIndent

Sets a list’s indent.

OSErr BLSetIndent(UInt8 inIndent, BlugsRef inList)

inIndent The new indent in pixels.

inList The list whose indent is set.

BLSetIndent changes the pixel value of the current indent setting. Although the
inIndent value is encoded with 8 bits, Blugs enforces a maximum of 100 pixels. Note that
this maximum is subject to change in future versions.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Indent greater than maximum.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

C h a p t e r 1 : B l u g s A P I

50

Events

Call these routines to handle events reported by the Event Manager.

BLClick

Processes a mouseDown event in a list.

BLClickResult BLClick(UInt32 inWhen, Point inWhereLocal,
EventModifiers inModifiers, BlugsRef inList)

inWhen The when field of the Event Manager event record.

inWhereLocal The location, in coordinates local to the list’s host window, of the
mouseDown event. Call GlobalToLocal on (a copy of) the
where field of the Event Manager event record.

inModifiers The modifiers field of the Event Manager event record.

inList The list in which the mouseDown event occurred.

Call BLClick when the Event Manager reports a mouseDown event in a list. BLClick
handles all mouse interaction with list elements and returns a code indicating how many
clicks it has processed in the same cell. See the section “Click Result” on page 31. If the
click was not in a cell, BLClick returns blNothingHappenedClickResult. If the click
was in the list’s grow box, BLClick returns blGrowBoxClickResult.

Since this function does not report in great detail whether or how the click was handled,
you should only call it after you have ascertained the click was not in another user
interface item in your window or dialog. The best way to do this is to call BLGetRect on
the list and then call PtInRect to determine whether the mouseDown occurred inside the
list bounds.

BLKey

Handles a keyboard event in a list.

BLKeyResult BLKey(UInt32 inMessage, UInt32 inWhen,
EventModifiers inModifiers, BlugsRef inList)

inMessage The message field of the Event Manager event record.

inWhen The when field of the Event Manager event record.

inModifiers The modifiers field of the Event Manager event record.

inList The list in which a key event is to be processed.

Call BLKey in response to a keyDown or autoKey event in a window in which a Blugs list
can receive keyboard activity (by being active and visible). BLKey returns a value of type

C h a p t e r 1 : B l u g s A P I

51

BLKeyResult to indicate what happened as a result of the event. See the section “Key
Result” on page 30.

If the key represents a display character (alphanumeric, punctuation), Blugs responds as
follows: if the list currently has an inline edit session in progress, the key event is sent to
the content handler in control of the inline session. If there is no inline session the key is
added to the list’s internal search string and Blugs searches for the cell with the closest
matching string and selects the cell if one is found.

Non-display characters are handled as follows: those that TextEdit should be able to
process (such as from delete, arrow keys, page up, etc.) are sent to the inline edit session if
there is one, as are return and enter if requested by the handler. Otherwise Blugs modifies
cell selection as appropriate for navigation keys. Return and enter end the inline session if
there is one. Delete, tab, function keys and other non-display keys are ignored.

Command-key combinations are almost universally ignored by Blugs (since they should
go to the Menu Manager); however, command-arrow combinations are valid and are
handled appropriately.

For further details, see the section “Handling Keyboard Interaction” on page 10.

BLIdle

Handles idle processing when there is a list in the frontmost window.

void BLIdle(Point inWhere, BlugsRef inList)

inWhere The current mouse location in local coordinates.

inList The list which is in the active window.

At least once during your main event loop, call BLIdle for each list in an active window
or dialog.

BLIdle first calls the content handler associated with an inline edit session, if there is one.
This allows the handler to call on TextEdit or WASTE to flash the insertion caret. It then
calls the handler for the cell under the cursor if that handler requests idle messages. It then
adjusts the cursor based on its current position relative to titles, inline edit fields, and other
elements that may cause cursor changes. The last thing BLIdle does is to check if there is
an inline edit pending; if there is, it starts the inline edit session if an appropriate delay has
passed since the inline edit region was last clicked.

If the list is invisible or inactive, BLIdle does nothing.

Cell Selection

Use these routines to control and get information about cell selection in your lists. All the
routines in this section are restricted to cell selection; to handle title selection you must use
routines from the “Title Bars” section starting on page 83. All selection effects update the
list unless autodraw is disabled.

C h a p t e r 1 : B l u g s A P I

52

BLSetCellSelectable

Makes it possible or impossible for the user and your application to select a particular cell.

OSErr BLSetCellSelectable(BLCell inCell, Boolean inSelectable,
BlugsRef inList)

inCell The cell whose selectablitiy is to be set.

inSelectable true if the cell can be selected.

inList The list which contains the cell.

BLSetCellSelectable sets the selectability of a given cell. If a cell is selectable, the user
can select it by means of mouse clicks and keyboard navigation, and your application can
select it with routines like BLSelectCell. A non-selectable cell cannot be selected by any
of these methods.

If you pass false in the inSelectable parameter, BLSetCellSelectable makes sure
the cell is deselected before returning.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Cell does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetRepresentativeColumn

Redirects selection to a single column.

OSErr BLSetRepresentativeColumn(UInt16 inColumn, BlugsRef inList)

inColumn The column to which selection is redirected.

inList The list which contains the columns.

BLSetRepresentativeColumn prevents cells in any column other than inColumn from
being selected. Instead, Blugs will subsequently select a cell in the same row, but in the
column passed as inColumn. The resulting behavior can be similar to Finder list views, in
which only cells in the filename/icon column can be selected, and clicking in another
column selects cells in the former. If you pass zero in the inColumn parameter, it clears
any previously defined representative, and all columns can be selected as normal.

Routines like BLDeleteColumns and BLAddColumns that may renumber columns, as
well as user-initiated changes like drag-rearranging, update the list’s representative. In
other words, representative status moves with the column.

BLSetRepresentativeColumn does not alter existing selections.

C h a p t e r 1 : B l u g s A P I

53

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetSelect

Selects or deselects a cell.

OSErr BLSetSelect(Boolean inSelect, BLCell inCell,
BlugsRef inList)

inSelect true if the cell is to be selected, false if it is to be deselected.

inCell The cell which is to be selected or deselected.

inList The list which contains the cell.

BLSetSelect selects or deselects a cell if possible. Blugs redirects selection or deselection
effects to a cell in the representative column if there is one.

If inSelect is true, Blugs selects the cell and scrolls to make it more fully visible if
needed. If the cell has been made non-selectable by means of BLSetCellSelectable or
BLSetColumnSelectable, BLSetSelect does nothing. If the list allows only one
selected cell at a time (that is, if the blOnlyOne flag is set), any other selected cells are
deselected.

If inSelect is false, Blugs deselects the cell.

If the cell does not exist or you pass a bad list reference, or the cell’s selection status is
already the same as inSelect, BLSetSelect does nothing.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Cell does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSelectOneCell

Selects a cell and deselects all others.

void BLSelectOneCell(BLCell inCell, BlugsRef inList)

inCell The cell which is to be selected.

inList The list which contains the cell.

BLSelectOneCell selects a cell if possible and deselects all other cells. Blugs redirects
selection to a cell in the representative column if there is one. If appropriate, it scrolls to

C h a p t e r 1 : B l u g s A P I

54

make the cell more fully visible. If the cell has been made non-selectable by means of
BLSetCellSelectable or BLSetColumnSelectable, or does not exist, or you pass a
bad list reference, BLSelectOneCell does nothing.

BLSelectAll

Selects a cell and deselects all others.

OSErr BLSelectAll(BlugsRef inList)

inList The list whose cells are selected.

BLSelectAll selects all cells in the list, except those which have been made non-
selectable by means of BLSetCellSelectable or BLSetColumnSelectable.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLDeselectAll

Deselects all cells.

void BLDeselectAll(BlugsRef inList)

inList The list whose cells are deselected.

BLDeselectAll removes selection from all cells in the list. If you pass a bad list
reference, BLDeselectAll does nothing.

BLIsCellSelected

Determines if a given cell is selected.

Boolean BLIsCellSelected(BLCell inCell, BlugsRef inList)

inCell The cell whose selection status is to be tested.

inList The list which contains the cell.

BLIsCellSelected returns true if the cell is selected and false if it is not. It does not
take into account any representative column but only reports the status of the cell itself. If
the cell does not exist or you pass a bad list reference, BLIsCellSelected returns
false.

C h a p t e r 1 : B l u g s A P I

55

BLGetSelect

Searches for the next selected cell.

OSErr BLGetSelect(BLGetSelectMethod inMethod, BLCell* ioCell,
BlugsRef inList)

inMethod A constant indicating where to look for selected cells.

ioCell On input, the cell at which the search begins. On output, the first
selected cell that was found.

inList The list to be searched.

BLGetSelect searches, starting with the cell pointed to by ioCell, for a selected cell. See
the enumeration “Get Select Method” on page 31. If inMethod is
blCellGetSelectMethod, Blugs searches all cells. If inMethod is
blRowGetSelectMethod, Blugs only searches ioCell->row. If
blColumnGetSelectMethod, Blugs only searches ioCell->col. In all cases Blugs only
searches cells starting with ioCell.

If Blugs finds a selected cell, it places it in ioCell and returns noErr. If neither the cell
initially passed in nor any subsequent cells are selected, BLGetSelect returns
errAENoUserSelection and the contents of ioCell are unchanged.

RESULT CODES

errAENoUserSelection (-10013)
No selection found.

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) ioCell does not exist.
nilHandleErr (-109) Bad list reference.
paramErr (-50) Unknown method.
noErr (0) Selection found.

BLHitTest

Identifies the object under the sursor.

OSErr BLGetSelect(Point inWhere, BLHitTestPtr outHitTest,
BlugsRef inList)

inWhere A point in local coordinates.

outHitTest The address of a BLHitTestRec.

inList The list which is to be hit tested.

BLHitTest finds the Blugs part at the point inWhere and returns the type of part, its list
coordinates, and its rectangle or (in the case of blDisclosureTrianglePart) the
rectangle of its containing part. Additionally, if the part hit is blHTitleBarTitlePart,
blHTitleBarFillerPart, blVTitleBarTitlePart, or blVTitleBarFillerPart,

C h a p t e r 1 : B l u g s A P I

56

Blugs returns a title zone code in outHitTest->u.titleZone. If the part code is
blHScrollPart or blVScrollPart, Blugs returns the scroll bar part (returned by
FindControl or FindControlUnderMouse) in outHitTest->u.controlPart.

Note that when the list is in a user pane control, the scroll bars have the list set as their
supervisor, so BLHitTest will not return blHScrollPart or blVScrollPart in that
case.

See the sections “Hit Test Record” on page 26 and “Title Zones” on page 26.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) Selection found.

Drag and Drop

Use these routines to invoke Blugs’ built in drag-handling capabilities. You must invoke
them from a drag tracking handler you have installed in a window or dialog.

BLTrackDrag

Handles a drag’s interaction with a list.

OSErr BLTrackDrag(DragTrackingMessage inMessage,
DragReference inDragRef, BlugsRef inList)

inMessage The drag tracking message received from the Drag Manager.

inDragRef The current drag.

inList The list within which the drag is currently being tracked.

BLTrackDrag attempts to handle a drag as it interacts with inList. Call this function
from a drag tracking handler you have installed in an application window or dialog.

RESULT CODES

dragNotAcceptedErr (-1857) Bad list or drag reference.
Drag Manager errors (-1861 to -1850)

Drag Manager returned error.
noErr (0) No error.

BLReceiveDrag

Handles a drop on a list.

OSErr BLReceiveDrag(DragReference inDragRef, BlugsRef inList)

inDragRef The current drag.

C h a p t e r 1 : B l u g s A P I

57

inList The list within which the drop occurred.

BLReceiveDrag attempts to handle a drop on inList. Call this function from a drag
receiving handler you have installed in an application window or dialog.

RESULT CODES

dragNotAcceptedErr (-1857) Bad list or drag reference.
Drag Manager errors (-1861 to -1850)

Drag Manager returned error.
noErr (0) No error.

BLGetListFromDrag

Retrieves a reference to the list in which a drag began.

OSErr BLGetListFromDrag(DragReference inDragRef,
BlugsRef* outList)

inDragRef The current drag.

inList On output, the list from which the drag originated.

BLGetListFromDrag attempts to retrieve the list which was stored as a private data item
in the drag. If inDragRef did not originate in a Blugs list owned by the current process,
outList contains nil on output and BLGetListFromDrag returns
cantGetFlavorErr.

RESULT CODES

cantGetFlavorErr (-1854) No list stored in drag.
noErr (0) No error.

BLGetCellFromDragItemRef

Retrieves a reference to the list in which a drag began.

OSErr BLGetCellFromDragItemRef(DragReference inDragRef,
DragItemRef inDragItem,
BLCell* outCell)

inDragRef The current drag.

inDragItem The item reference number, starting with 1.

outCell On output, the cell that is being dragged.

BLGetCellFromDragItemRef attempts to retrieve one of the cells stored as a private
data item in the drag. When Blugs starts a cell drag it adds each cell, in a private data
flavor, as a flavorSenderOnly drag item, with the item reference starting at 1 for the

C h a p t e r 1 : B l u g s A P I

58

first cell and going sequentially. If inDragRef did not originate in a Blugs list owned by
the current process, outCell is unchanged on output and
BLGetCellFromDragItemRef returns cantGetFlavorErr.

RESULT CODES

cantGetFlavorErr (-1854) No cell stored in drag item.
noErr (0) No error.

List Display

Use these routines to control the display of your lists.

BLSetAutodraw

Enables or disables automatic updating of a list.

OSErr BLSetAutodraw(Boolean inDraw, BlugsRef inList)

inDraw true if Blugs is to automatically redraw the list.

inList The list whose autodraw status is to be set.

When you create a list, you set autodraw either on or off (see the blAutodraw list flag on
page 20). You enable or disable this automatic onscreen updating using BLSetAutodraw.
If your application needs to make a number of changes such as adding a number of rows
or columns, you can improve performance by temporarily disabling autodraw, then re-
enabling it when all changes have been made. As a result of this strategy the screen is only
updated once, when all changes have been made. Also, Blugs avoids updating its offscreen
buffer while autodraw is suspended.

If the list’s autodraw status is already set as indicated by inDraw, BLSetAutodraw does
nothing. If inDraw is true, both the offscreen and onscreen images are automatically
updated. You do not need to call BLUpdate when you enable autodraw.

Important
You should only disable autodraw for a short time if your list is displayed onscreen. If you
leave autodraw disabled, the list will not display correctly, and will not respond properly
to user interaction. �

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLUpdate

Draws all or part of a list onscreen.

void BLUpdate(RgnHandle inUpdateRgn, BlugsRef inList)

C h a p t e r 1 : B l u g s A P I

59

inUpdateRgn The portion of the list that needs to be updated, or nil to update
the entire list.

inList The list that is to be updated.

Your application typically calls BLUpdate in response to an Event Manager
updateEvent. BLUpdate redraws all portions of the list that intersects inUpdateRgn. If
you pass nil for the update region, Blugs redraws the entire list and draws the list border
and focus if they exist.

If the list has scroll bars, Blugs calls Draw1Control to update them. Be aware that if your
application calls a more generic routine like DrawControls to update controls in a
window that contains a list, and calls BLUpdate, the list’s scroll bars will be drawn twice;
users may find this distracting. You may find it desirable to update controls in your
window individually.

If the list is not currently visible, or if inUpdateRgn does not intersect the list, BLUpdate
does nothing.

BLIsVisible

Determines whether a list is hidden.

Boolean BLIsVisible(BlugsRef inList)

inList The list to test for visibility.

When you create a list you can set or clear the blVisible list feature flag (see page 20).
To determine the current visibility setting, call this function. BLIsVisible returns true
if the list is visible.

Note that this function does not compute whether or not the list’s host window is hidden,
or any other external condition which might obscure the list. It only checks the list’s
internal state.

BLSetVisible

Hides or shows a list.

OSErr BLSetVisible(Boolean inMakeVisible, BlugsRef inList)

inMakeVisible true if the list is to become visible.

inList The list that is to be hidden or shown.

Use this routine to hide or show a list. If you pass true for inMakeVisible, Blugs shows
the list; if you pass false, Blugs hides it. If the list contains scroll bars,
BLSetVisibility calls HideControl or ShowControl to change scroll bar visibility. If
inMakeVisible is false, Blugs calls InvalRect to force an update over the list
rectangle (inset by -3 pixels when appropriate to cover the focus or border area).

C h a p t e r 1 : B l u g s A P I

60

If the list’s visibility is already set to the state passed in the inMakeVisible parameter,
BLSetVisible does nothing.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLIsActive

Determines whether a list is active.

Boolean BLIsActive(BlugsRef inList)

inList The list to test for active status.

When you create a list you set or clear the blActive feature flag (see page 20). You can
activate or deactivate a list using the BLSetActive procedure.To determine the flag’s
current setting, call this function. BLIsActive returns true if the list is active. If you pass
a bad list reference, BLIsActive returns false.

BLSetActive

Activates or deactivates a list.

void BLSetActive(Boolean inMakeActive, BlugsRef inList)

inMakeActive true if the list is to be activated.

inList The list to activate or deactivate.

Use this routine to change a list’s active state. If you pass true for the inMakeActive
parameter, Blugs activates the list; if you pass false, Blugs deactivates it. If the list
contains scroll bars, BLSetActive calls HiliteControl, ActivateControl, or
DeactivateControl, as appropriate, to activate or deactivate them.

If the list’s active state is already the same as the state passed in the inMakeActive
parameter, or you pass a bad list reference, BLSetActive does nothing.

BLGetFocusedPart

Determines whether and what part of a list has keyboard focus.

ControlPartCode BLGetFocusedPart(BlugsRef inList)

inList The list whose focus state is determined.

BLGetFocusedPart returns a part code indicating whether a list is currently focused,
and what part of the list is focused.

C h a p t e r 1 : B l u g s A P I

61

RETURN VALUES

kControlFocusNoPart The list is not focused; no inline edit session.
kControlListBoxPart The list is focused; no inline edit session.
blInlineEditPart The list has an inline edit session that is focused.

BLSetFocusedPart

Sets a list’s keyboard focus.

ControlPartCode BLSetFocusedPart(ControlPartCode inPart,
BlugsRef inList)

inPart One of the following constants defined by the Control Manager
and Blugs: kControlFocusNoPart,
kControlFocusNextPart, kControlFocusPrevPart,
kControlListBoxPart.

inState The list whose focus state is set.

BLSetFocusedPart applies focusing as appropriate for the part code passed in the
inPart parameter and returns a part code indicating the list part that has become focused.
See the section “Keyboard Focus” on page 12 for more information on the part codes you
can pass to this function.

If the list’s focus changes, Blugs redraws the list as necessary.

Important
The constant kBLInlineEditPart is not appropriate as an input to this function. If you
pass kBLInlineEditPart Blugs simply defocuses the list and returns
kControlFocusNoPart. If you want to start an inline edit session, call
BLBeginInlineEdit. �

RETURN VALUES

kControlFocusNoPart The list is not focused; no inline edit session.
kControlListBoxPart The list is focused; no inline edit session.

BLGetColumnFontStyle

Gets font information for a column.

OSErr BLGetColumnFontStyle(UInt16 inColumn,
ControlFontStylePtr outFontStyle,
BlugsRef inList)

inColumn The column whose font information you want, or zero for the
vertical title bar.

outFontStyle The address of a ControlFontStyleRec which Blugs fills in
with the column’s font information.

inState The list that contains the column.

C h a p t e r 1 : B l u g s A P I

62

Pass the address of a ControlFontStyleRec to BLGetColumnFontStyle to have
Blugs fill in the record fields with font information for that column. If you pass zero for
inColumn, Blugs gets the font information from the vertical title bar. When a column (or
vertical title bar) is created, the fields of its associated ControlFontStyleRec are
initialized as follows:

fontStyle.flags = kControlUseFontMask | kControlUseSizeMask;
fontStyle.font = 1;
fontStyle.size = 9;

Blugs sets the current port to the values in the appropriate ControlFontStyleRec
before calling a content handler. After calling the handler, the port’s state is restored.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetColumnFontStyle

Sets font information for a column.

OSErr BLSetColumnFontStyle(UInt16 inColumn,
const ControlFontStyleRec* inFontStyle,
BlugsRef inList)

inColumn The column whose font information you want, or zero for the
vertical title bar.

outFontStyle The address of a ControlFontStyleRec which Blugs copies to
the column’s font information.

inState The list that contains the column.

Pass the address of a ControlFontStyleRec to BLGetColumnFontStyle to have
Blugs copy the information to the appropriate column. If you pass zero for inColumn,
Blugs applies the font information to the vertical title bar. When a column (or vertical title
bar) is created, its associated ControlFontStyleRec is initialized as follows:

fontStyle.flags = kControlUseFontMask | kControlUseSizeMask;
fontStyle.font = 1;
fontStyle.size = 9;

Blugs sets the current port to the values in the appropriate ControlFontStyleRec
before calling a content handler. After calling the handler, the port’s state is restored.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

C h a p t e r 1 : B l u g s A P I

63

Blugs User Pane Controls

When the Appearance Manager is available, you can use these routines to create a user
pane control that encapsulates an entire list. These routines only work under Appearance
1.0 and later.

BLMakeUserPaneControl

Sets up a list as an Appearance Manager user pane control.

OSErr BLMakeUserPaneControl(ControlRef* outNewCntl,
BlugsRef inList)

outNewCntl On output, an Appearance user pane control which encapsulates
the list.

inList The list from which the user pane control is created.

BLMakeUserPaneControl creates a user pane control containing a list. This routine will
only be successful if the Appearance Manager is installed.

RESULT CODES

Control Manager errors (-30580 to -30599)
paramErr (-50) Bad list or control reference.
unimpErr (-4) Appearance Manager not installed.
noErr (0) No error.

BLConvertUserPaneControl

Sets up a list as an Appearance Manager user pane control, in an existing control.

OSErr BLConvertUserPaneControl(ControlRef ioControl,
BlugsRef inList)

ioControl A user pane control that is to be converted to a Blugs list user pane
control.

inList The list from which the user pane control is created.

BLConvertUserPaneControl modifies ioControl, installing the callbacks and data
necessary to turn it into a Blugs user pane control. This routine will only be successful if
the Appearance Manager is installed.

This routine is provided mainly to support those dealing with the Dialog Manager. If you
need a Blugs list in a dialog, you can create a user item in your 'DITL' resource, then
transmogrify it into a Blugs pane using this routine.

Note

C h a p t e r 1 : B l u g s A P I

64

For best results, you should set up the user pane with the same feature flags Blugs uses
when it creates a user pane. If you create a user pane using a resource, use 58 (0x003A) as
the inital value to encode the feature set kControlHandlesTracking |
kControlWantsActivate | kControlWantsIdle |
kControlSupportsEmbedding. If you user pane supports focus, use the value 318
(0x013E), which additionally encodes the features kControlSupportsFocus |
kControlGetsFocusOnClick. �

RESULT CODES

Control Manager errors (-30580 to -30599)
paramErr (-50) Bad list or control reference.
unimpErr (-4) Appearance Manager not installed.
noErr (0) No error.

BLRefFromUserPaneControl

Returns an embedded list from a user pane control created with
BLMakeUserPaneControl.

BlugsRef BLRefFromUserPaneControl(ControlRef inBlugsCntl)

inBlugsCntl The user pane control from which a list reference is to be
extracted.

You can use BLRefFromUserPaneControl to extract a reference to a Blugs list from an
Appearance Manager user pane control created with BLMakeUserPaneControl. If you
pass a nil control, or if Blugs cannot retrieve a valid list reference from the control,
BLRefFromUserPaneControl returns nil.

BLDisposeUserPaneControl

Disposes of an Appearance user pane control based on a Blugs list.

OSErr BLDisposeUserPaneControl(Boolean inDisposeOfList,
ControlRef inBlugsCntl)

inDisposeOfList true of this function is to call BLDispose on the list contained in
the user pane control.

inBlugsCntl The Appearance Manager user pane control to be disposed.

This routine disposes of a Blugs user pane control and optionally disposes of the
embedded list as well. You must use this routine to dispose of controls created with
BLMakeUserPaneControl; do not simply call DisposeControl or the memory
occupied by the list will be leaked and the list’s scroll bars will (in most cases) be
automatically disposed without the list knowing about it.

Ordinarily, disposing of a user pane would dispose of the list’s scroll bars in cases where
an embedding hierarchy is established in the host window (as is typically the case, and
recommended for Blugs user panes). This is because Blugs embeds list scroll bars in the
user pane. Because the list may not be disposed of (and in any case would end up with

C h a p t e r 1 : B l u g s A P I

65

stale ControlRefs in its data structure), BLDisposeUserPaneControl re-embeds the
list’s scroll bars in the host window’s root control before calling DisposeControl on the
user pane. If there is no embedding hierarchy (GetRootControl returns an error) then
Blugs does not try to re-embed the scroll bars.

RESULT CODES

paramErr (-50) Bad list or control reference.
noErr (0) No error.

Inline Editing

You can use these routines if you need more control over inline editing than is provided by
Blugs’ event-handling routines. You can use these routines if you need to start or stop
inline editing based on factors not available to Blugs.

Inline editing is allowed in cells but not in titles.

BLIsCellEditable

Determines if a cell’s content handler supports inline editing.

Boolean BLIsCellEditable(BLCell inCell, BlugsRef inList)

inCell The cell whose editablility is checked.

inList The list which contains the cell.

BLIsCellEditable returns true if inCell can be edited. If the cell does not support
inline editing, editing has been disabled with BLSetCellEditable, or if Blugs is unable
to retrieve the cell’s content handler, it returns false.

BLSetCellEditable

Allows or disallows inline editing.

OSErr BLSetCellEditable(BLCell inCell, Boolean inEditable,
BlugsRef inList)

inCell The cell whose editablility is set.

inEditable true if the cell is to be editable, false if not.

inList The list which contains the cell.

BLSetCellEditable disables or enables inline editing in a cell. It is particularly useful in
a lists where a few otherwise editable cells are read-only in nature. By calling this routine
you can keep the user from typing in new values for a few cells, and still have the
advantage of using a table instead of a spreadsheet.

C h a p t e r 1 : B l u g s A P I

66

You can make a cell editable even if the current content handler does not support inline
editing: BLIsCellEditable will still report false because of the content handler. If you
pass false for inEditable and there is already an inline session in inCell,
BLSetCellEditable does not end the inline session.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Cell does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLIsInlineEdit

Determines if a list has an inline edit session in progress.

Boolean BLIsInlineEdit(BlugsRef inList)

inList The list which is to be tested for an inline edit session.

BLIsInlineEdit returns true if inList has an inline edit session in progress. If there is
no inline edit session, or if you pass a bad list reference, it returns false.

BLGetInlineEditCell

Retrieves the cell which is being edited.

OSErr BLGetInlineEditCell(BLCell* outCell, BlugsRef inList)

outCell On output, the cell which is the target of the current inline edit
session.

inList The list whose inline edit cell is to be retrieved.

BLGetInlineEditCell returns the cell which is the target of the current inline edit
session. If there is an inline edit session, BLGetInlineEditCell passes the inline edit
cell back in the outCell parameter (it does not matter what values it contains on input).
Otherwise, it returns invalidEditState and the contents of outCell are unchanged.

RESULT CODES

invalidEditState (-2023) No inline edit session.
notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

C h a p t e r 1 : B l u g s A P I

67

BLBeginInlineEdit

Begins an inline edit session in a cell.

OSErr BLBeginInlineEdit(BLCell inCell, BlugsRef inList)

inCell The cell in which an inline edit session is to take place.

inList The list which contains the cell.

This routine begins an inline edit session in the specified cell. It first checks the cell’s
content handler to make sure it supports inline editing. It then deselects all selected cells,
after which it sets the list’s keyboard focus to the cell’s text region. It then calls the cell’s
content handler to begin the inline edit session; usually this means the content handler
allocates and prepares a TextEdit environment or the equivalent. Finally, Blugs updates
the cell.

If the cell’s content handler does not support inline editing, BLBeginInlineEdit returns
editingNotAllowed. Otherwise it returns noErr.

RESULT CODES

editingNotAllowed (-9995) Content handler does not support inline editing.
noErr (0) No error.

BLEndInlineEdit

Terminates a list’s current inline edit session.

void BLEndInlineEdit(BlugsRef inList)

inList The list in which an inline edit session is in progress.

This routine ends an inline edit session in the specified list. It calls the content handler for
the cell currently being edited, informing it that the edit session is ending. If the content
handler indicates that the cell’s contents have changed as a result of the edit session, and if
the list was previously sorted over the column which contains the inline edit cell, Blugs re-
sorts the list. Blugs removes keyboard focus from the edited cell’s content, and (if
appropriate) focuses the entire list.

If there is no current inline edit session, BLEndInlineEdit does nothing.

Cell Data

These routines allow you to manipulate data contained and displayed in list cells and
titles. A cell must have a content type (hence a content handler) in order to contain and
display data. Use BLGetCellContentType and BLSetCellContentType to
manipulate these. Use BLGetCellData to retrieve a copy of cell data, and
BLSetCellData and BLClearCell to change the data. BLCountCellFlavors and
BLGetIndFlavorInfo can be used for fine-tuning cell data acquisition.

C h a p t e r 1 : B l u g s A P I

68

BLGetCellContentType

Retrieves a cell’s content type.

BLContentType BLGetCellContentType(BLCell inCell,
BlugsRef inList)

inCell The cell or title whose content type is retrieved.

inList The list which contains the cell.

This routine retrieves a cell or title’s content type regardless of whether the list is a table or
a spreadsheet. If the row and col fields of inCell are nonzero, it is interpreted as a cell. If
one of the fields contains zero, it is interpreted as a title. If both are zero, it is interpreted as
the top left corner.

If inList is a bad list reference, or if inCell is not valid, BLGetCellContentType
returns zero. Otherwise it returns the cell’s content type (which may also be zero if it has
not had a content type assigned).

Note that when a list or title bar has the table property
(blTable/blTitlesOneContentType) inCell does not have to exist. For example, if
inList is a table and you pass inCell = {100,1}, Blugs gets the content type for column 1
and ignores the row number (100). As a further example, if you pass {0,100} and there is a
horizontal title bar with the blTitlesOneContentType property, Blugs gets its content
type and ignores the column (100). When in doubt, pass 1 (not zero, since Blugs will
interpret it as a title bar or the top left corner). Blugs only validates cell fields that are
relevant.

BLSetCellContentType

Sets a cell’s content type. In a table, this has the effect of setting the content type for the
whole column.

OSErr BLSetCellContentType(BLCell inCell, BLContentType inContent,
BlugsRef inList)

inCell The cell or title whose content type is set.

inContent The new content type.

inList The list which contains inCell.

This routine sets a cell or title’s content type. If the row and col fields of inCell are
nonzero, it is interpreted as a cell. If one of the fields contains zero, it is interpreted as a
title. If both are zero, it is interpreted as the top left corner.

If inCell is interpreted as a cell, and the list is a spreadsheet, this routine sets a single
cell’s content type to inContent. In a table, however, the content type for the entire
column that contains inCell becomes set to inContent.

If inCell is interpreted as a title, BLSetCellContentType sets the title’s content type to
inContent. If the title bar which contains the title was created with the feature flag
blTitlesOneContentType set, all titles in the title bar are set to inContent. Otherwise

C h a p t e r 1 : B l u g s A P I

69

only the one title is changed. Note that the top left corner is not considered a part of either
title bar, so the blTitlesOneContentType flag will not cause the top left corner to
change.

If inCell is interpreted as the top left corner, its content type is changed as if it were a
single cell.

In all cases, if the cell(s) affected by this function initially have a different content type,
they are deinitialized before being assigned the new type. BLSetCellContentType calls
the old handler with the blCellDeinitMsg so it can dispose of any allocated memory
before the cell is reinitialized. Note that when a cell is deinitialized and reinitialized, it is
empty of data on output.

To have a cell associated with no content handler and holding no data, set the content type
to zero.

As with BLGetCellContentType (see above), Blugs only validates cell fields that are
relevant. For table-type lists and title bars, you can pass any number except zero for the
irrelevant field.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Cell does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetCellData

Retrieves a copy of a cell’s data in a particular flavor.

OSErr BLGetCellData(BLCell inCell, OSType inDataFlavor,
UInt32* ioDataSize, void* outData,
BlugsRef inList)

inCell The cell or title whose data is to be retrieved.

inDataFlavor A four-character code identifying the flavor of data that is to be
retrieved.

ioDataSize On input, the maximum number of bytes that should be retrieved.
On output, the actual number of bytes retrieved.

outData The location in memory to which the appropriate content handler
should copy data, or nil to just get the data size.

inList The list which contains inCell.

BLGetCellData causes Blugs to call the cell or title’s content handler with the message
blCellGetDataMsg. If the handler can export data in the desired flavor, it copies a
maximum of ioDataSize bytes to the location in memory referenced by outData if
outData is non-nil. It then changes the contents of ioDataSize to the actual number of
bytes copied, or the actual data size if outData is nil. It is assumed that if the handler
cannot export the desired flavor or quantity of data, it will return zero in ioDataSize.

C h a p t e r 1 : B l u g s A P I

70

If the row and col fields of inCell are nonzero, it is interpreted as a cell. If one of the
fields contains zero, it is interpreted as a title. If both are zero, it is interpreted as the top
left corner.

� WARNING
Content handlers are largely on their own when exporting data; Blugs doesn’t do much
except validate parameters and invoke the handler. If you use someone else’s content
handler code, make sure you understand how it exports data. (For example, does it give
you a reference to text, or does it give you the actual characters?) Beware of passing bogus
information in ioDataSize even if you are sure the handler “couldn’t possibly return
more than four bytes.” A content handler will very cheerfully clobber your application by
returning thousands of bytes of data you didn’t want and didn’t plan on getting. �

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Cell does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetCellData

Sets a cell contents to data in a particular flavor.

OSErr BLSetCellData(BLCell inCell, OSType inDataFlavor,
UInt32 inDataSize, void* inData,
BlugsRef inList)

inCell The cell or title whose data is to be set.

inDataFlavor A four-character code for the flavor of data being installed.

inDataSize The number of bytes of data pointed to by the inData parameter.

inData The address from which the appropriate content handler should
copy data.

inList The list which contains inCell.

BLSetCellData causes Blugs to call the cell or title’s content handler with the
blCellSetDataMsg message. If the handler can import data in the specified flavor, it
copies a maximum of inDataSize bytes from the location in memory referenced by
inData.

If the row and col fields of inCell are nonzero, it is interpreted as a cell. If one of the
fields contains zero, it is interpreted as a title. If both are zero, it is interpreted as the top
left corner.

If autodraw is enabled, Blugs updates the list after the cell data is set.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Cell does not exist.
nilHandleErr (-109) Bad list reference.

C h a p t e r 1 : B l u g s A P I

71

paramErr (-50) nil data pointer.
noErr (0) No error.

BLClearCell

Sets a cell’s data to a content handler-defined “clear” status.

OSErr BLClearCell(BLCell inCell, BlugsRef inList)

inCell The cell to clear.

inList The containing list.

BLClearCell causes Blugs to call the cell’s content handler with the message
blCellClearDataMsg. The actual effect this has on the cell’s contents depends on the
content handler — it may deallocate all cell storage or merely set (for example) a string’s
length byte to zero.

If autodraw is enabled, Blugs updates the list after the cell is cleared.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Cell does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLCountCellFlavors

Counts the number of data flavors a cell’s content handler can export.

UInt32 BLCountCellFlavors(BLCell inCell, BlugsRef inList)

inCell The cell whose exportable data flavors are counted.

inList The list which contains the cell.

BLCountCellFlavors causes Blugs to call the cell or title’s content handler to determine
how many flavors of data it can export for the cell, and to return that number.

If the cell or title does not exist, or inList is not valid, BLCountCellFlavors returns
zero.

BLGetIndFlavorInfo

Returns the type and data size of the indexed flavor that a cell can export.

OSErr BLGetIndFlavorInfo(BLCell inCell, UInt16 inIndex,
OSType* outDataFlavor,
UInt32* outSize, BlugsRef inList)

C h a p t e r 1 : B l u g s A P I

72

inCell The cell whose exportable data flavor information is to be
retrieved.

inIndex A 1-based index to the flavor information retrieved.

outDataFlavor On output, a four-character code for the data export flavor.

outSize On output, the size in bytes of the data flavor the cell can export.

inList The list which contains the cell.

BLGetIndFlavorInfo retrieves the indexed flavor type and size of data inCell can
export. Generally, you will call BLCountCellFlavors to determine what range of
indices you can pass to this function.

If this routine returns an error code, the contents of outFlavorType and outSize are
undefined. The content handler will presumably return a zero size in outSize if inIndex
is out of range or otherwise not valid, but Blugs cannot validate inIndex itself.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Cell or title does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

Sorting and Searching

Use these routines if you need finer control over table sorting than Blugs can do
automatically, or if you need to search a column for data.

BLGetSortState

Retrieves a list’s primary sort column and/or its sort status.

OSErr BLGetSortState(BLSortState* outState, UInt16* outColumn,
BlugsRef inList)

outState On output, the list’s sort status. Pass nil if you don’t care.

outColumn On output, the list’s primary sort column. Pass nil if you don’t
care.

inList The list whose sort state is to be retrieved.

This routine gets the column over which the list is currently sorted, and the status. The
BLSortState bits blSortStateSorted and blSortStateLargeToSmall are set or
cleared to indicate how the list is currently sorted. If there is no primary sort column or
sorting is not possible in the list, BLGetSortState returns zero in outColumn and
blSortStateUnsorted (zero) in outState.

C h a p t e r 1 : B l u g s A P I

73

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSort

Sorts a list over a column.

OSErr BLSort(BLSortState inState, UInt16 inColumn,
BlugsRef inList)

inState The new sort state.

inColumn The column over which the list is to be sorted.

inList The list which is to be sorted.

This routine sets the sort status of inList. If the blSortStateSorted bit is set in
inState, Blugs marks inColumn as the primary sort column, sorts the list in the direction
indicated by the inState blSortStateLargeToSmall bit status, and selects the
appropriate title in the horizontal title bar if possible. The sort button, if present, will
reflect the new state. If the list is not a table, not sortable, or if inColumn’s content handler
does not support data comparisons, BLSort does not sort the list.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSearch

Finds the closest matching cell text in a table column.

OSErr BLSearch(UInt16 inColumn, void* inData, UInt32 inDataSize,
BLCell* outCell, BlugsRef inList)

inColumn The column which is to be searched.

inData The address of the text data to be searched for.

inDataSize The number of bytes of text pointed to by inData.

outCell On output, the cell whose data matched most closely.

inList The list which contains the column to be searched.

BLSearch attempts to find the cell whose textual contents match the input as closely as
possible. Blugs first sorts the list (internally) and then executes a binary search algorithm,
calling upon the table’s content handler to compare the input with cell data. If the return

C h a p t e r 1 : B l u g s A P I

74

value is non-negative, BLSearch has been at least partially successful. See the result codes
below, and the section “Error and Result Codes” on page 32.

This function will only work under a fairly constrained set of conditions. The list must be a
sorted table whose primary sort column supports comparison of text with cell data.

Row hierarchy in a disclosure list is flattened in the course of constructing the internal
sorted form. It is not currently possible to exclude or give priority to disclosure levels. This
flattening is internal to the search mechanism; your list hierarchy remains intact.

RESULT CODES

errMessageNotSupported (-30580)
Handler doesn’t support text search.

kNoClientTableErr (-9097) List is not a table.
handlerNotFoundErr (-1856) No handler for column.
notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column does not exist.
nilHandleErr (-109) Bad list reference.
paramErr (-109) nil data or zero-length data.
blSearchResultExactMatch (0)

Search data was matched exactly: matched cell is
returned.

blSearchResultNextCell (1000)
Search data was not matched exactly: next cell is returned.

blSearchResultPrevCell (1001)
Search data was not matched exactly: previous cell is
returned.

Row and Column Identifiers

 When you create a list whose rows and columns can be rearranged when the user drags
them, you could lose track of which row or column is which. With these routines you can
set and retrieve 32-bit refCon-like elements for each row and column. If you use BLLoad
to create a list from a resource, you can also embed these identifiers in the resource data.
You can use these identifiers in any way you choose, but if a row or column is deleted its
identifier is removed. Rows and columns have their identifiers initialized to zero when
they are created.

BLSetRowIdentifier

Stores a 32-bit identifier in a row.

OSErr BLSetRowIdentifier(UInt16 inRow, UInt32 inIdentifier,
BlugsRef inList)

inRow The row which is to hold the identifier.

inIdentifier The data to be stored in the row.

inList The list which contains the row.

C h a p t e r 1 : B l u g s A P I

75

This routine stores a 32-bit identifier in a row. You can use this number to identify a row
even if it is subsequently moved. If the row already has an identifier, it is replaced by the
new one. You can retrieve the identifier as long as the row exists.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row number zero or out of bounds.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetRowIdentifier

Retrieves a row’s 32-bit identifier.

OSErr BLGetRowIdentifier(UInt16 inRow, UInt32 outIdentifier,
BlugsRef inList)

inRow The row whose identifier is retrieved.

outIdentifier On output, the identifier that was stored in the row.

inList The list which contains the row.

This routine retrieves a 32-bit identifier from a row. You can use this number to identify a
row even if it is subsequently moved. If you have not stored an identifier in the row,
BLGetRowIdentifier will retrieve the row’s initial value of zero.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row number zero or out of bounds.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetColumnIdentifier

Stores a 32-bit identifier in a column.

OSErr BLSetColumnIdentifier(UInt16 inColumn, UInt32 inIdentifier,
BlugsRef inList)

inColumn The column which is to hold the identifier.

inIdentifier The data to be stored in the column.

inList The list which contains the column.

This routine stores a 32-bit identifier in a column. You can use this number to identify a
column even if it is subsequently moved. If the column already has an identifier, it is
replaced by the new one. You can retrieve the identifier as long as the column exists.

C h a p t e r 1 : B l u g s A P I

76

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column number zero or out of bounds.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetColumnIdentifier

Retrieves a column’s 32-bit identifier.

OSErr BLGetColumnIdentifier(UInt16 inColumn, UInt32 outIdentifier,
BlugsRef inList)

inColumn The column whose identifier is retrieved.

outIdentifier On output, the identifier that was stored in the column.

inList The list which contains the column.

This routine retrieves a 32-bit identifier from a column. You can use this number to
identify a column even if it is subsequently moved. If you have not stored an identifier in
the column, BLGetColumnIdentifier will retrieve the column’s initial value of zero.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column number zero or out of bounds.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

Unique Identifiers

Use these routines to get row, column, and cell unique identifiers from row and column
numbers, and to get row and column numbers from unique identifiers.

BLGetCellFromUID

Gets the coordinates of a cell from its row and column UIDs.

OSErr BLGetCellFromUID(BLCellUID* inID, BLCell* outCell,
BlugsRef inList)

inID The address of a cell UID.

outCell On output, the cell coordinates.

inList The list which contains the cell.

BLGetCellFromUID is a wrapper for calls to BLGetRowFromUID and
BLGetColumnFromUID. It calls the aforementioned routines on the rowID and colID
fields, repectively, of the inID parameter. If either the row or column identifier cannot be

C h a p t e r 1 : B l u g s A P I

77

resolved to an existing row or column, BLGetCellFromUID returns
userDataItemNotFound. This takes time linear in the number of rows and columns.

RESULT CODES

userDataItemNotFound (-2026)
Row or column does not exist.

noErr (0) No error.

BLGetRowFromUID

Gets a row number from a row UIDs.

UInt16 BLGetRowFromUID(BLUID* inID, BlugsRef inList)

inID The address of a row UID.

inList The list which contains the row.

BLGetRowFromUID searches a list’s internal row data array for a UID equal to inID. If
found, Blugs returns the row number. Otherwise it returns zero. This takes time linear in
the number of rows.

BLGetColumnFromUID

Gets a column number from a column UID.

UInt16 BLGetColumnFromUID(BLUID* inID, BlugsRef inList)

inID The address of a column UID.

inList The list which contains the column.

BLGetColumnFromUID searches a list’s internal column data array for a UID equal to
inID. If found, Blugs returns the column number. Otherwise it returns zero. This takes
time linear in the number of columns.

BLGetCellUID

Retrieves a unique identifier from cell coordinates.

OSErr BLGetCellUID(BLCell inCell, BLCellUID* outID,
BlugsRef inList)

inCell The cell whose unique identifier is retrieved.

outID On output, the identifier.

inList The list which contains the cell.

C h a p t e r 1 : B l u g s A P I

78

BLGetCellUID is a wrapper for calls to BLGetRowUID and BLGetColumnUID. It calls the
aforementioned routines on the row and col fields, repectively, of the inCell parameter.
If either the row or column does not exist, BLGetCellUID returns inputOutOfBounds
and outID contains 0x00000000 000000000 in either the rowID or colID field (or
both). This routine takes constant time.

RESULT CODES

inputOutOfBounds (-190) Row or column does not exist.
noErr (0) No error.

BLGetRowUID

Retrieves a unique identifier from a row number.

void BLGetRowUID(UInt16 inRow, BLUID* outID, BlugsRef inList)

inRow The row whose unique identifier is retrieved.

outID On output, the identifier.

inList The list which contains the row.

BLGetRowUID looks up the row’s unique identifier stored in the list’s row data array. If
the row does not exist, outID contains 0x00000000 000000000 on output. This routine
takes constant time.

BLGetColumnUID

Retrieves a unique identifier from a column number.

void BLGetColumnUID(UInt16 inColumn, BLUID* outID,
BlugsRef inList)

inColumn The column whose unique identifier is retrieved.

outID On output, the identifier.

inList The list which contains the column.

BLGetColumnUID looks up the column’s unique identifier stored in inList’s column
data array. If the column does not exist, outID contains 0x00000000 000000000 on
output. This routine takes constant time.

User Data

You can use these routines to store additional data in a list. With the Mac OS List Manager
and Control Manager, you can store your own data in a refCon field within the list or
control record. Blugs allows you to store multiple user data items, each associated with a
key value.

C h a p t e r 1 : B l u g s A P I

79

BLSetUserData

Stores data identified by a key.

OSErr BLSetUserData(SInt32 inKey, SInt32 inData, BlugsRef inList)

inKey A unique identifier for the data. If data referenced by this key
already exists in the current list, that data is replaced.

inData The data to be stored in the list.

inList The list in which the data is stored.

This routine stores the 32-bit inData value in the list. If the list already holds data
referenced by inKey, Blugs replaces the previous data with the new data. To store more
than 32 bits of information, you can pass a handle or pointer to a block of memory you
have allocated. You must deallocate any memory whose reference you store in the list
prior to disposing of the list, or you will have a memory leak. Similarly, you must
deallocate the memory if you wish to store a different memory block referenced by the
same inKey value, or you remove the data by calling BLRemoveUserData. Blugs only
disposes of memory blocks it has itself allocated.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
memFullErr (-108) Could not allocate memory to store key-data pair.
noErr (0) No error.

BLGetUserData

Retrieves user data previously stored in a list, referenced by a key.

OSErr BLGetUserData(SInt32 inKey, SInt32* outData,
BlugsRef inList)

inKey A unique identifier for the data being retrieved.

outData On output, the data which was previously stored in the list.

inList The list in which the data is stored.

Retrieves a 32-bit value previously stored in the list, referenced by inKey. If the key
cannot be located in the list, the routine returns paramErr and passes back nil in the
outData parameter.

RESULT CODES

userDataItemNotFound (-2026)
Key could not be located.

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.

C h a p t e r 1 : B l u g s A P I

80

noErr (0) No error.

BLRemoveUserData

Removes user data previously stored in a list, referenced by a key.

OSErr BLRemoveUserData(SInt32 inKey, BlugsRef inList)

inKey A unique identifier for the data being removed.

inList The list in which the data is stored.

BLRemoveUserData finds and removes a 32-bit value previously stored in the list,
referenced by inKey. Subsequent attempts to access the data previously associated with
inKey will fail. If your data is a reference to a block of memory you have allocated, you
must retrieve and dispose of it before calling BLRemoveUserData. Otherwise you will
suffer a memory leak.

RESULT CODES

userDataItemNotFound (-2026)
Key could not be located.

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

Disclosure

Use these routines for additional control over disclosure (hierarchical) lists.

BLGetRowDisclosureLevel

Gets a row’s disclosure level.

OSErr BLGetRowDisclosureLevel(UInt16 inRow,
UInt16* outDisclosureLevel,
BlugsRef inList)

inRow A valid row number.

outDisclosureLevel
On output, inRow’s disclosure level.

inList The list that contains the row.

Call BLGetRowDisclosureLevel to obtain a row’s disclosure level. Disclosure levels are
zero-based: level zero is the root level. If an error occurs, BLGetRowDisclosureLevel
returns zero in outDisclosureLevel.

C h a p t e r 1 : B l u g s A P I

81

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; nonexistent row.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetRowDisclosureLevel

Sets a row’s disclosure level.

OSErr BLSetRowDisclosureLevel(UInt16 inRow,
UInt16 inDisclosureLevel,
BlugsRef inList)

inRow A valid row number.

inDisclosureLevel inRow’s new disclosure level.

inList The list that contains the row.

Call BLSetRowDisclosureLevel to indent or outdent (is that really a word??) inRow
and its descendants to a new disclosure level. Disclosure levels are zero-based: level zero is
the root level.

Blugs checks to make sure the passed-in disclosure is valid for inRow and all its
descendants, which must move with it. The same constraints discussed in the section
“Drag and Drop Disclosure Constraints” (Blugs Reference Manual page 10) apply to this
routine; Blugs uses the same code for much of the logic.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; nonexistent row.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetParentRow

Gets the number of a row’s immediate parent.

UInt16 BLGetParentRow(UInt16 inRow, BlugsRef inList)

inRow The row number of a child row.

inList The list which contains the row.

This routine returns the number of the input row’s immediate parent. If the list is not a
disclosure list, or if inRow has no parent (that is, if its disclosure level is zero because it is
at the top level of the hierarchy) BLGetParentRow returns zero.

C h a p t e r 1 : B l u g s A P I

82

BLRowIsDisclosed

Tests whether all of a row’s ancestors are expanded.

Boolean BLRowIsDisclosed(UInt16 inRow, BlugsRef inList)

inRow The row to be tested.

inList The list which contains the row.

This routine determines whether all of inRow’s ancestors (that is, all rows which at least
indirectly “contain” the row in question) are expanded. If they are all expanded (disclosure
triangles point down) then BLRowIsDisclosed returns true.

Note that this routine does not compute whether or not inRow is actually visible onscreen.
It may be scrolled out of the view rectangle.

BLExpandRow

Causes a row, and optionally its descendants, to be expanded.

OSErr BLExpandRow(Boolean inDeepExpand, UInt16 inRow,
BlugsRef inList)

inDeepExpand true if any of the row’s descendants which have children are to
be expanded as well. false if only inRow is to be expanded.

inRow The row to expand.

inList The list which contains the row.

When inDeepExpand is false, this function expands only the row passed in the inRow
parameter, as if the user clicked its disclosure triangle. When inDeepExpand is true, all
descendants with children are expanded as well, as if the user option-clicked its disclosure
triangle.

If you have installed a RowExpandProc callback, it is called for each row expanded.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; nonexistent row.
nilHandleErr (-109) Bad list reference.
paramErr (-50) Not a disclosure list.
noErr (0) No error.

BLCollapseRow

Causes a row, and optionally its descendants, to be collapsed.

OSErr BLCollapseRow(Boolean inDeepCollapse, UInt16 inRow,
BlugsRef inList)

C h a p t e r 1 : B l u g s A P I

83

inDeepCollapse true if any of the row’s descendants which have children are to
be collapsed as well. false if only inRow is collapsed.

inRow The row to collapse.

inList The list which contains the row.

When inDeepCollapse is false, this function collapses only the row passed in the
inRow parameter, as if the user clicked the row’s disclosure triangle. When
inDeepCollapse is true, all descendants with children are collapsed as well, as if the
user option-clicked the row’s disclosure triangle.

If you have installed a RowExpandProc callback, it is called for each row collapsed.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Row zero; nonexistent row.
nilHandleErr (-109) Bad list reference.
paramErr (-50) Not a disclosure list.
noErr (0) No error.

BLCountDescendants

Returns the count of a row’s descendants.

UInt16 BLCountDescendants(UInt16 inRow, BlugsRef inList)

inRow The row whose descendants are counted.

inList The list which contains the row.

BLCountDescendants returns a count of the range of rows which have a higher
disclosure level than the one passed in the inRow parameter. This count represents the
number of rows which are hidden if the row in question is collapsed.

If inRow is zero or does not exist, or you pass a nil or non-disclosure list,
BLCountDescendants returns zero.

Title Bars

You can create title bars independently of lists, or load title bar information from resource
using the BLLoad function. To create a title bar on the fly, call BLNewTitleBar using a
preexisting list.

BLNewTitleBar

Creates a title bar associated with a list.

OSErr BLNewTitleBar(UInt16 inThickness, UInt16 inFlags,

C h a p t e r 1 : B l u g s A P I

84

Boolean inVertical, BlugsRef inList)

inThickness The number of pixels high (for horizontal title bars) or wide (for
vertical title bars) the title bar is to be.

inFlags A set of flags that determine the title bar’s characteristics. See the
section “Title Bar Flags” on page 24 for details.

inVertical true if the title bar is vertical, false if it is horizontal.

inList The list which is to contain the title bar.

BLNewTitleBar creates a title bar and associates it with a list. Blugs creates the title bar
within the bounds of the list’s view rectangle. If you pass zero in the inThickness
parameter, Blugs initializes the title bar’s thickness to the default value of 16 pixels. (This
value is subject to change in future releases. You should not depend on it.)

If the list in which BLNewTitleBar creates a title bar already has a title bar of the same
orientation (for example, if the list already has a horizontal title bar, and the inVertical
parameter is false), the old title bar is deleted and replaced with the new one. If this
happens, the content handler(s) for the old title bar’s titles are called to dispose of data for
individual titles.

If you wish to load and populate a list and title bar(s) with a single function call, use the
BLLoad function.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
memFullErr (-108) Could not allocate memory for title bar.
noErr (0) No error.

BLGetHorizontalTitleBar

Returns a reference to a list’s horizontal title bar.

BLTitleBarRef BLGetHorizontalTitleBar(BlugsRef inList)

inList The list which contains the title bar.

BLGetHorizontalTitleBar returns a reference to the list’s horizontal title bar, if it
exists. Returns nil if you pass a bad list reference or if the list does not have a horizontal
title bar.

BLGetVerticalTitleBar

Returns a reference to a list’s vertical title bar.

BLTitleBarRef BLGetVerticalTitleBar(BlugsRef inList)

inList The list which contains the title bar.

C h a p t e r 1 : B l u g s A P I

85

BLGetVerticalTitleBar returns a reference to the list’s vertical title bar, if it exists.
Returns nil if you pass a bad list reference or if the list does not have a vertical title bar.

BLSelectTitle

Selects a title in a title bar.

OSErr BLSelectTitle(UInt16 inTitle, BLTitleBarRef inTitleBar,
BlugsRef inList)

inTitle The title to select.

inTitleBar The title bar that contains the title.

inList The list that contains the title.

Call BLSelectTitle to select inTitle and deselect any other selected title in
inTitleBar. If inTitleBar is the horizontal title bar, the list can be sorted, and the new
selection was not selected before, Blugs makes inTitle the new primary sort column and
sorts the list. This routine behaves exactly as if the user had clicked in inTitle. Note that
it is not currently possible to pass zero for inTitle; you cannot do a “deselect all titles”
operation.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Title zero; nonexistent title.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetSelectedTitle

Returns the one-based index of the currently selected title in a title bar.

UInt16 BLGetSelectedTitle(BLTitleBarRef inBar, BlugsRef inList)

inBar The title bar whose selection is to be retrieved.

inList The list which contains the title bar.

BLGetSelectedTitle returns the one-based index of the currently selected title in the
title bar specified by inBar. If the title bar does not contain a selection,
BLGetSelectedTitle returns zero.

Scrolling and Navigation

For the most part Blugs automates scrolling and navigation based on user input. If you
need programmatic control, you can use BLPageUp and BLPageDown. In rare cases you
may want to customize the scroll distance using BLSetScrollDistance.

C h a p t e r 1 : B l u g s A P I

86

BLMakeVisible

Scrolls a list to make a cell more fully visible.

OSErr BLMakeVisible(BLCell inCell, BlugsRef inList)

inCell The cell which is to be made more fully visible.

inList The list which contains the cell.

BLMakeVisible tries to make the specified cell more fully visible by scrolling. The cell’s
top and left sides take priority. If the cell is at least partially scrolled out of view, Blugs
does an animated scroll so the user can see what navigation has taken place.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Nonexistent cell.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLPageUp

Scrolls up by approximately the height of the list.

void BLPageUp(BlugsRef inList)

inList The list that is to be scrolled.

BLPageUp scrolls the list up (toward the beginning of the list) by a number of pixels equal
to the list height minus an arbitrary 12 pixels, so the user can stay oriented by having a
small portion of the original view visible. Note that BLPageUp and BLPageDown, like
Blugs’ internal handling of the page up and page down keys, do not attempt to align the
view top or bottom to a row boundary.

The value of 12 pixels is subject to change in future versions. Blugs does not attempt to
align the view rectangle with cell boundaries because rows can all differ in height; trying
to align would make it impossible in some situations to keep the same views across
multiple page-up/page-down alternations. From the user’s point of view this could be
disconcerting.

BLPageDown

Scrolls down by approximately the height of the list.

void BLPageDown(BlugsRef inList)

inList The list that is to be scrolled.

C h a p t e r 1 : B l u g s A P I

87

BLPageDown scrolls the list down (toward the end of the list) by a number of pixels equal
to the list height minus an arbitrary 12 pixels. Note that BLPageUp and BLPageDown, like
Blugs’ internal handling of the page up and page down keys, do not attempt to align the
view top or bottom to a row boundary.

BLSetScrollDistance

Sets the atomic distance by which Blugs scrolls a list.

OSErr BLSetScrollDistance(UInt8 inDistance, Boolean inVertical,
BlugsRef inList)

inDistance The pixels per iteration by which the list will be scrolled.

inVertical true if the distance is to be applied to the vertical scroll bar,
false if it is to be applied to the horizontal scroll bar.

inList The list whose scroll distance is to be set.

BLSetScrollDistance allows you to customize list scrolling by setting the number of
pixels at a time that are scrolled when the user holds down one of the specified scroll bar’s
arrow buttons. If you need unusually slow or fast scrolling you should use this function.
Most users will never need it. The default scroll distance is six pixels (subject to change in
future versions).

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

Widgets

Use these routines to create and manage scroll bar widgets: placards in line with list scroll
bars. Only lists with scroll bars can have widgets.

BLAddWidgets

Adds one or more widgets to a list.

OSErr BLAddWidgets(Boolean inVertical, UInt16 inCount,
UInt16 inWidget, BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inCount The number of widgets to add.

inWidget The 1-based index of the first added widget.

inList The list to which widgets are added.

C h a p t e r 1 : B l u g s A P I

88

This function inserts a number of widgets equal to inCount, starting at the widget whose
number is equal to inWidget. If there is already a widget at the inWidget location, it
(and any widgets numbered higher than it) are shifted to make room for the new widgets.
If you pass zero in the inCount parameter, Blugs does nothing.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Widget zero; nonexistent widget.
nilHandleErr (-109) Bad list reference.
memFullErr (-108) Not enough memory.
noErr (0) No error.

BLDeleteWidgets

Deletes one or more widgets from a list.

OSErr BLDeleteWidgets(Boolean inVertical, UInt16 inCount,
UInt16 inWidget, BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inCount The number of widgets to be deleted.

inWidget The one-based index of the first deleted widget.

inList The list from which widgets are deleted.

This function deletes a number of widgets equal to inCount, starting at inWidget.
BLDeleteWidgets does not try to remove widgets that do not exist. If inCount is zero,
all widgets are deleted.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Widget zero; nonexistent widget.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLCountWidgets

Counts the widgets in a scroll bar.

UInt16 BLCountWidgets(Boolean inVertical, BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inList The list that contains the scroll bar.

C h a p t e r 1 : B l u g s A P I

89

BLCountWidgets returns the number of widgets in line with the vertical scroll bar if
inVertical is true, the horizontal scroll bar if false. If there is no scroll bar in the
specified axis or you pass a bad list parameter, BLCountWidgets return zero.

BLGetWidgetSize

Measures a widget.

SInt16 BLGetWidgetSize(Boolean inVertical, UInt16 inWidget,
BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget to measure.

inList The list that contains the widget.

BLGetWidgetSize returns the pixel size of the widget. Depending on the associated
scroll bar axis, one dimension of a widget is always fixed at the scroll bar size (16 pixels in
document windows). This routine returns the variable size: the other dimension. In the
vertical scroll bar, that is height. If there is no scroll bar in the specified axis or you pass a
bad list parameter, BLGetWidgetSize return zero.

BLSetWidgetSize

Sets a widget’s height or width.

OSErr BLAddWidgets(Boolean inVertical, UInt16 inWidget,
SInt16 inSize, BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inSize The new widget size.

inList The list that contains the widget.

BLSetWidgetSize sets the pixel size of the widget. Depending on the associated scroll
bar axis, one dimension of a widget is always fixed at the scroll bar size (16 pixels in
document windows). This routine adjusts the variable size: the other dimension. In the
vertical scroll bar, that is height. Blugs redraws the widget after resizing it.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
rgnTooBigErr (-500) New size is too big.
inputOutOfBounds (-190) Widget zero; nonexistent widget.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

C h a p t e r 1 : B l u g s A P I

90

BLGetWidgetContentType

Returns a widget’s content type.

BLContentType BLGetWidgetContentType(Boolean inVertical,
UInt16 inWidget,
BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inList The list that contains the widget.

BLGetWidgetContentType returns the content type of the widget. If there is no scroll
bar in the specified axis or you pass a bad list parameter, BLGetWidgetContentType
return zero.

BLSetWidgetContentType

Sets a widget’s content type.

OSErr BLSetWidgetContentType(Boolean inVertical, UInt16 inWidget,
BLContentType inContent,
BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inContent The new content type.

inList The list that contains the widget.

This routine sets a widget’s content type. If the widget has a different content type on
entry, it is deinitialized before being assigned the new type. BLSetWidgetContentType
calls the old handler with the blCellDeinitMsg so it can dispose of any allocated
memory before the cell is reinitialized. Note that when a widget is deinitialized and
reinitialized, it is empty of data on output. Blugs redraws the widget after setting the
content.

To have a widget associated with no content handler and holding no data, set the content
type to zero.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Widget zero; nonexistent widget.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

C h a p t e r 1 : B l u g s A P I

91

BLGetWidgetData

Retrieves data from a widget.

OSErr BLGetWidgetData(Boolean inVertical, UInt16 inWidget,
OSType inDataFlavor, UInt32* ioDataSize,
void* outData, BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inDataFlavor A four-character code identifying the flavor of data that is to be
retrieved.

ioDataSize On input, the maximum number of bytes that should be retrieved.
On output, the actual number of bytes retrieved.

outData The location in memory to which the appropriate content handler
should copy data, or nil to just get the data size.

inList The list that contains the widget.

BLGetWidgetData is a lot like BLGetCellData. It causes Blugs to call the widget’s
content handler with the message blCellGetDataMsg. If the handler can export data in
the desired flavor, it copies a maximum of ioDataSize bytes to the location in memory
referenced by outData if outData is non-nil. It then changes the contents of
ioDataSize to the actual number of bytes copied, or the actual data size if outData is
nil. It is assumed that if the handler cannot export the desired flavor or quantity of data, it
will return zero in ioDataSize.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Widget does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLSetWidgetData

Installs data in a widget.

OSErr BLSetWidgetData(Boolean inVertical, UInt16 inWidget,
OSType inDataFlavor, UInt32 inDataSize,
void* inData, BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inDataFlavor A four-character code for the flavor of data being installed.

inDataSize The number of bytes of data pointed to by the inData parameter.

C h a p t e r 1 : B l u g s A P I

92

inData The address from which the appropriate content handler should
copy data.

inList The list that contains the widget.

BLSetWidgetData is similar to BLSetCellData. It causes Blugs to call the widget’s
content handler with the blCellSetDataMsg message. If the handler can import data in
the specified flavor, it copies a maximum of inDataSize bytes from the location in
memory referenced by inData. Blugs updates the widget after the data is set.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Widget zero; nonexistent widget.
nilHandleErr (-109) Bad list reference.
paramErr (-50) nil data pointer.
noErr (0) No error.

BLClearWidget

Removes all data from a widget.

void BLClearWidget(Boolean inVertical, UInt16 inWidget,
BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inList The list that contains the widget.

BLClearWidget is similar to BLClearCell. It causes Blugs to call the widget’s content
handler with the message blCellClearDataMsg. The actual effect this has on the cell’s
contents depends on the content handler — it may deallocate storage or merely set (for
example) a string’s length byte to zero. Blugs updates the widget after clearing it.

BLGetWidgetRect

Returns a widget’s bounds.

OSErr BLGetWidgetRect(Boolean inVertical, UInt16 inWidget,
Rect* outRect, BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inWidget On output, the widget bounds.

inList The list that contains the widget.

C h a p t e r 1 : B l u g s A P I

93

BLGetWidgetRect calculates the rectangle occupied by a widget and returns it in
outRect. If it returns an error code other than noErr, outRect will contain an empty
rectangle (fields all zero) on output.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Widget zero; nonexistent widget.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetWidgetFlags

Returns a widget’s feature flags.

UInt16 BLGetWidgetFlags(Boolean inVertical, UInt16 inWidget,
BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inList The list that contains the widget.

BLGetWidgetFlags returns a widget’s feature flags. See the enumeration “Widget Flags”
on page 24.If there is no scroll bar in the specified axis or you pass a bad list parameter,
BLGetWidgetFlags return zero.

BLSetWidgetFlags

Sets a widget’s feature flags.

OSErr BLSetWidgetContentType(Boolean inVertical, UInt16 inWidget,
UInt16 inWhichFlags, UInt16 inFlags,
BlugsRef inList)

inVertical true if vertical scroll bar, false if horizontal.

inWidget The 1-based index of the widget.

inWhichFlags A mask in which flag bits to be changed are set.

inFlags The new set of flags.

inList The list that contains the widget.

This routine modifies a widget’s feature flags. See the enumeration “Widget Flags” on
page 24. Blugs redraws the widget after modifying the flags.

C h a p t e r 1 : B l u g s A P I

94

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Widget zero; nonexistent widget.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

Utility Routines

BLSettings

Changes Blugs’ global settings.

void BLSettings(UInt32 inSettings)

inSettings The new global settings.

Call BLSettings to change Blugs’ global behavior. Currently the only option is
blTempGWorlds, but other behaviors may be added in future versions (behaviors that
should be dictated by runtime conditions such as memory availability and screen
resolution).

BLEnvironment

Returns flag values for common Gestalt checks.

UInt32 BLEnvironment(void)

When you call BLEnter to initialize Blugs, a number of Gestalt checks are made and
recorded. To get these values, and to find out if Blugs is indeed initialized, call
BLEnvironment. See the enumeration Environment Flags on page 19.

BLAppearanceVersion

Returns the Appearance Manager version.

SInt16 BLAppearanceVersion(void)

Use this routine to determine whether your application or content handler is running
under the Appearance Manager. If some version of Appearance is installed,
BLAppearanceVersion returns the BCD (binary coded decimal) version number, with
the major revision in the high-order byte. For example, Appearance 1.0 is represented as
0x0100. If BLAppearanceVersion returns 0x0000 then Appearance is not present; do
not use Appearance Manager routines in that case.

C h a p t e r 1 : B l u g s A P I

95

BLCredits

Retrieves the Blugs copyright string.

void BLCredits(Str255 outCredits)

outCredits On output, the Blugs credits string.

Use this routine to get the credits string so you can display it in an about box or splash
screen. This is the only Blugs routine (other than BLEnter) you can safely call when Blugs
is uninitialized.

BLDrawBevelButton

Draws a 3-D button with square corners.

void BLDrawBevelButton(Rect* inRect, ThemeDrawState inState,
ThemeButtonValue inValue)

inRect The rectangle in which the button is drawn.

inState The button’s draw state.

inValue The button’s value.

BLDrawBevelButton draws a control-like object with square corners and 2-pixel beveled
edges filling the input rectangle. This is the routine Blugs calls for drawing titles. Pass one
of the Appearance Manager draw state constants kThemeStateActive,
kThemeStateInactive, or kThemeStatePressed in the inState parameter. Pass
either of the Appearance Manager button value constants kThemeButtonOn or
kThemeButtonOff in the inValue parameter. If Appearance version 1.1 or later is
installed, Blugs calls DrawThemeButton using the constant kThemeSmallBevelButton.
Otherwise it uses its own code.

Important
If you have installed a custom bevel button drawing routine using
BLRegisterBevelButtonProc, that routine is not called by BLDrawBevelButton. �

BLDrawPlacard

Draws a 3-D raised pane.

void BLDrawPlacard(Rect* inRect, ThemeDrawState inState)

inRect The rectangle in which the placard is drawn.

inState The placard’s draw state.

BLDrawPlacard draws a control-like object with square corners and 1-pixel beveled
edges filling the input rectangle. This is the routine Blugs calls for drawing widgets. Pass
one of the Appearance Manager draw state constants kThemeStateActive,

C h a p t e r 1 : B l u g s A P I

96

kThemeStateInactive, or kThemeStatePressed in the inState parameter. If
Appearance version 1.0 or later is installed, Blugs calls DrawThemePlacard. Otherwise it
uses its own code.

Registering User-Defined Routines

You call the BLRegisterContentHandler function to make a content handler callback
function available to Blugs. For other callback types, you pass a pointer to a
BLCallbacksRec with the addresses of your callback routines, to the BLSetCallbacks.
If you want to register callbacks individually, you can call a routine whose name is the
example user routine name with “My” changed to “BLRegister”. Thus you register a
routine named below as MyBevelButtonProc by means of the function called
BLRegisterBevelButtonProc.

Note
You can unregister any callback except a content handler by passing nil for its routine
pointer. BLRegisterBackgroundProc(nil, list) is perfectly valid code. �

� WARNING
You are strongly encouraged not to call from within a user-defined routine any Blugs
routine which may change the state of the list or call your routine recursively. If you
cannot avoid this, make sure your routine is reentrant. �

BLRegisterContentHandler

Associates a content hander procedure with a content type, and allows Blugs to call upon
that handler routine.

OSErr BLRegisterContentHandler(BLContentType inContent,
UInt16 inVariationCode,
BLContentHandlerProcPtr inProc)

inContent A 16-bit number identifying the handler.

inVariationCode An initial setting for the handler.

inProc The address of a content handler function.

Before any content handler can be used, it must be registered. Registration associates a
routine pointer with a content type. Cells, titles, and other list elements with a given
content type are processed by the handler routine associated with that type.

The inVariationCode parameter is a value that becomes associated with the handler on
a global level. Handlers will typically define whether or not the variation code has any
meaning, and what that meaning is. For example, a text content handler might use this
value to indicate the default font setting for all its cells.

Content handlers are registered globally to your application. Thus, if your static text
handler is associated with a content type of three, all elements in your application with this
type are processed by that handler, no matter what list or window contains them.

For fastest access, Blugs allocates a global hash table of content types and looks up the
procedure pointer and other data from that table. The table is created when you call
BLEnter and is populated when you call BLRegisterContentHandler. Blugs’ globals

C h a p t e r 1 : B l u g s A P I

97

are opaque, so you cannot access or modify this hash table. You can, however, allow Blugs
to make most efficient use of it. For reasons that will be obvious to readers familiar with
separate chaining hashing algorithms, the current version of Blugs can access handlers the
quickest if their content types are between 1 and 101, inclusive. We consider it highly
unlikely that developers will ever need to register 101 handlers simultaneously, but in case
you are tempted to use a number over 101 (perhaps for mnemonic reasons) you should be
aware that doing so might result in a small performance penalty. Using content types
greater than 101 also uses a few extra bytes of memory.

Content type zero is not a valid type. If inContentType is zero, or if inContent is
already registered, or if inProc is nil, BLRegisterContentHandler returns
paramErr.

Important
You cannot unregister or replace a content handler. Since Blugs does not keep a “list of
lists” (like the Window Manager’s window list) there is no way for the content handler
subsystem to find all existing lists in order to let the handler deinitialize itself. In simpler
language, you can’t pass nil for inProc, or a content type that is already used, for
inContent. �

RESULT CODES

notInitErr (-900) Blugs is not initialized.
memFullErr (-108) Could not allocate memory needed to store handler.
paramErr (-50) nil procedure pointer, content type zero, content type

already registered.
noErr (0) No error.

BLGetCallbacks

Gets all callbacks registered to a list.

OSErr BLGetCallbacks(BLCallbacksPtr outCallbacks,
BlugsRef inList)

outCallbacks The address of a callback record.

inList The list whose callbacks are retrieved.

BLGetCallbacks fills each field of a BLCallbacksRec (see page 29), to which you pass
a pointer, with the user-defined routines registered to inList. If you call this routine on a
list that has just been created, you will find that all fields of the record are set to nil.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

C h a p t e r 1 : B l u g s A P I

98

BLSetCallbacks

Registers a set of callbacks to a list.

OSErr BLSetCallbacks(const BLCallbacksPtr inCallbacks,
BlugsRef inList)

inCallbacks The address of a callback record, or nil to remove all callbacks.

inList The list whose callbacks are retrieved.

BLSetCallbacks registers a list callback for which you provide a non-nil routine
pointer, for each field of a BLCallbacksRec (see page 29) passed by reference in
inCallbacks. For each callback record field in which you pass nil, the corresponding
routine is unregistered. If you pass a nil inCallbacks pointer, all callback routines are
unregistered.

The ability to pass nil for inCallbacks is new in Blugs 1.1.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterBackgroundProc

Makes a user-defined background-drawing callback available to Blugs.

OSErr BLRegisterBackgroundProc(BLBackgroundProcPtr inProc,
BlugsRef inList)

inProc The address of a background-drawing routine.

inList The list in which the routine will be executed.

BLRegisterBackgroundProc installs a user-defined cell background-drawing routine
in the specified list. See the description of MyBackgroundProc on page 103 for more
information on this type of routine. After installing your routine Blugs invokes it to redraw
cells with the new background, provided autodraw is enabled.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterBevelButtonProc

Makes a user-defined bevel button-drawing callback available to Blugs.

OSErr BLRegisterBevelButtonProc(BLBevelButtonProcPtr inProc,

C h a p t e r 1 : B l u g s A P I

99

BlugsRef inList)

inProc The address of a bevel button-drawing routine.

inList The list in which the routine will be executed.

BLRegisterBevelButtonProc installs a user-defined bevel button-drawing routine in
the specified list. See the description of MyBevelButtonProc on page 103 for more
information on this type of routine. After installing your routine Blugs invokes it to redraw
bevel buttons, provided autodraw is enabled.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterBorderProc

Makes a user-defined cell border-drawing callback available to Blugs.

OSErr BLRegisterBorderProc(BLBorderProcPtr inProc,
BlugsRef inList)

inProc The address of a border-drawing routine.

inList The list in which the routine will be executed.

BLRegisterBorderProc installs a user-defined cell border-drawing routine in the
specified list. See the description of MyBorderProc on page 104 for more information on
this type of routine.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterHiliteProc

Makes a user-defined cell hiliting callback available to Blugs.

OSErr BLRegisterHiliteProc(BLHiliteProcPtr inProc,
BlugsRef inList)

inProc The address of a cell hiliting routine.

inList The list in which the routine will be executed.

BLRegisterHiliteProc installs a user-defined cell hiliting routine in the specified list.
See the description of MyHiliteProc on page 105 for more information on this type of

C h a p t e r 1 : B l u g s A P I

100

routine. After installing your routine Blugs invokes it to apply the new hiliting style to any
selected cells, provided autodraw is enabled.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterRowExpandProc

Makes a user-defined row expansion callback available to Blugs.

OSErr BLRegisterRowExpandProc(BLRowExpandProcPtr inProc,
BlugsRef inList)

inProc The address of a row expansion routine.

inList The list in which the routine will be executed.

BLRegisterHiliteProc installs a user-defined row expansion routine in the specified
list. See the description of MyRowExpandProc on page 106 for more information on this
type of routine.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterSecondarySortColumnProc

Makes a user-defined secondary sort column callback available to Blugs.

OSErr BLRegisterSecondarySortColumnProc(
BLSecondarySortColumnProcPtr inProc,
BlugsRef inList)

inProc The address of a secondary sort column routine.

inList The list in which the routine will be executed.

BLRegisterSecondarySortColumnProc installs a user-defined secondary sort column
routine in the specified list. See the description of MySecondarySortColumnProc on
page 107 for more information on this type of routine.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

C h a p t e r 1 : B l u g s A P I

101

BLRegisterPreDragProc

Makes a user-defined drag-inspecting callback available to Blugs.

OSErr BLRegisterPreDragProc(BLPreDragProcPtr inProc,
BlugsRef inList)

inProc The address of a pre-drag routine.

inList The list in which the routine will be executed.

BLRegisterPreDragProc installs a user-defined routine to inspect a drag before it
begins, in the specified list. See the description of MyPreDragProc on page 107 for more
information on this type of routine.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterDragDataProc

Makes a user-defined callback that adds cell data available to Blugs.

OSErr BLRegisterDragDataProc(BLDragDataProcPtr inProc,
BlugsRef inList)

inProc The address of a drag data routine.

inList The list in which the routine will be executed.

BLRegisterDragDataProc installs in the specified list a user-defined routine that adds
cell data to a drag that is beginning. See the description of MyDragDataProc on page 108
for more information on this type of routine.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterDropValidationProc

Makes a user-defined drop validation callback available to Blugs.

OSErr BLRegisterDropValidationProc(
BLDropValidationProcPtr inProc,
BlugsRef inList)

inProc The address of a drop validation routine.

C h a p t e r 1 : B l u g s A P I

102

inList The list in which the routine will be executed.

BLRegisterDropValidationProc installs a user-defined drop validation routine in the
specified list. See the description of MyDropValidationProc on page 108 for more
information on this type of routine.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterDropProc

Makes a user-defined drop callback available to Blugs.

OSErr BLRegisterDropProc(BLDropProcPtr inProc, BlugsRef inList)

inProc The address of a drop routine.

inList The list in which the routine will be executed.

BLRegisterDropProc installs a user-defined drop-handling routine in the specified list.
See the description of MyDropProc on page 109 for more information on this type of
routine.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLRegisterPostDragProc

Makes a user-defined post-drag callback available to Blugs.

OSErr BLRegisterPostDragProc(BLPostDragProcPtr inProc,
BlugsRef inList)

inProc The address of a post-drag routine.

inList The list in which the routine will be executed.

BLRegisterPostDragProc installs a user-defined post-drag routine in the specified list.
See the description of MyPostDragProc on page 109 for more information on this type of
routine.

RESULT CODES

notInitErr (-900) Blugs is not initialized.

C h a p t e r 1 : B l u g s A P I

103

nilHandleErr (-109) Bad list reference.
noErr (0) No error.

User-Defined Routines

Using the appropriate registration function (see above) you make available your
implementation of one of the user-defined routines described in this section.

MyBackgroundProc

Supply your implementation of this routine to draw cell backgrounds rather than using the
default background.

pascal void MyBackgroundProc(Boolean inSortColumn, BLCell inCell,
const Rect* inRect, BlugsRef inList)

inSortColumn true if inCell is in the sorted column.

inCell The cell whose background is to be drawn.

inRect The address of the cell’s rectangle in local coordinates.

inList The list that contains the cell.

This routine is called to draw a cell’s background. The inSortColumn parameter is
provided so you can draw appropriate shading for cells in the primary sort column.

When Blugs calls your routine, the drawing environment is already set to the correct port.
Your routine should not change graphics ports. You do not need to include “clean-up”
code in your routine (such as code that restores the size of the graphics pen or the
foreground color) since Blugs restores the graphics environment as appropriate after your
routine returns.

MyBevelButtonProc

Supply your implementation of this routine to draw a bevel button as you wish, rather
than using the Appearance-supplied or built-in bevel button routines.

pascal Boolean MyBevelButtonProc(BLPart inPart, UInt16 inTitle,
const Rect* inRect,
ThemeDrawState inState,
ThemeButtonValue inValue,
BlugsRef inList)

inPart A code identifying the list part to be drawn.

inTitle The one-based index of the title to be drawn.

inRect The address of the rectangle within which the button should be
drawn.

inState The object’s current state.

C h a p t e r 1 : B l u g s A P I

104

inValue The object’s current value.

inList The list in which the title is to be drawn.

Blugs calls this routine to draw titles, filler titles, the sort button, and other objects that
typically appear as bevel buttons. The following part codes may be sent in the inPart
parameter:

blHTitleBarTitlePart
blHTitleBarFillerPart
blVTitleBarTitlePart
blVTitleBarFillerPart
blTopLeftPart
blSortButtonPart
blGrowBoxPart

For titles, the inTitle parameter contains a nonzero title number.
For other objects, inTitle is zero.

Blugs will pass one of the Appearance Manager draw state constants
kThemeStateActive, kThemeStateInactive, or kThemeStatePressed in the
inState parameter. Blugs will pass either of the Appearance Manager button value
constants kThemeButtonOn or kThemeButtonOff in the inValue parameter.

Your function should return true if it drew the object and false if it did not draw. In the
latter case, Blugs draws the bevel button as it normally would. You need only draw the
objects whose appearance you wish to customize.

MyBorderProc

Supply your implementation of this routine to draw cell borders.

pascal Boolean MyBorderProc(Boolean inDrawRowBorder,
Boolean inDrawColumnBorder,
BLCell inCell, const Rect* inRect,
BlugsRef inList)

inDrawRowBorder true if your routine should draw a horizontal border.

inDrawColumnBorder
true if your routine should draw a vertical border.

inCell The cell whose border you are drawing.

inRect A pointer to the cell’s rectangle.

inList The list which contains the cell.

Blugs calls this routine to draw cell borders. Typically you draw the border as a 1-pixel
thick line to the bottom or right of the cell.

C h a p t e r 1 : B l u g s A P I

105

MyFlattenProc

Supply your implementation of this routine to retrieve cell and title data for BLFlatten.

pascal void MyFlattenProc(BLCell inCell, OSType* outDataFlavor,
UInt32* ioDataSize, void* outData,
BlugsRef inList);

inCell The cell or title whose data is requested.

outDataFlavor On output, the preferred data flavor to save.

ioDataSize On output, the number of bytes of data to save.

outData nil on first call, a buffer into which your routine copies cell data
on second call.

inList The list that is being flattened.

Pass your implementation of this routine to BLFlatten. The first time it is called for a cell
or title, outData is nil. Return the data size and flavor. If, on output, ioDataSize is
nonzero, your routine will be called a second time with a valid outData buffer. Generally
this function will act as a wrapper for BLGetCellData. It allows you to determine what
data flavors to use, and you can filter out cells/titles you don’t want to save.

MyHiliteProc

Supply your implementation of this routine to draw selection hiliting as you wish, rather
than using the handler-supplied or built-in hilite routines.

pascal Boolean MyHiliteProc(Rect* inRect, BlugsRef inList)

inRect The address of the rectangle of the cell to be hilited.

inList The list that contains the cell.

This routine is called to draw cell hiliting. When installed in a list by means of the
BLRegisterHiliteProc procedure, it overrides Blugs’ built-in functionality and any
special hiliting done by content handlers. Your routine is called only for cells, not for any
other elements that can be selected (like titles).

Important
Use this type of procedure with care, and only with content handlers whose hiliting
requirements are compatible with yours. Registering a HiliteProc callback is an
excellent opportunity to perform user interface butchery. �

C h a p t e r 1 : B l u g s A P I

106

MyNotificationProc

Supply your implementation of this routine to respond to user actions as they are reported
by Blugs.

pascal void MyNotificationProc(BLNotificationMessage inMessage,
BLNotificationCommand inCommand,
BLPart inPart, BLCell inCell,
BlugsRef inList)

inMessage The type of event reported.

inCommand A command issued from the relevant content handler.

inPart The part in which the event happened.

inCell The coordinates of inPart.

inList The list in which the event happened.

This routine is called when something happens in a list and your application may want to
respond to it. The inMessage parameter is a predefined code for the type of event. The
inCommand parameter is data that Blugs passes from a content handler to your
notification. For example, a popup menu content handler may define a command that
means the user selected a new item. When the handler sends the command back to Blugs
in the content handler parameter block, Blugs passes the command along to your
notification callback. Based on inMessage, information in inList, and this command,
you can decide whether you need to respond to the event. Some notifications are not
content handler related, so inCommand may not be relvant in those cases.

There is no BLRegisterNotificationProc routine. Use BLSetCallbacks.

MyRowExpandProc

Supply your implementation of this routine to add and delete rows on the fly when a
disclosure triangle is expanded or collapsed.

pascal void MyRowExpandProc(Boolean inExpanding, UInt16 inRow,
BlugsRef inList)

inExpanding true if the row is being expanded, false if it is being collapsed.

inRow The number of the row that is being expanded or collapsed.

inList The list that contains the row.

This routine is called to add or delete rows when a parent row is in the process of being
expanded or collapsed. By registering a procedure of this kind, you can cut down on the
amount of time it takes to set up a large disclosure list, adding only the necessary rows at
initialization and deferring the rest until they are needed.

If you use, for example, BLAddRows or BLDeleteRows, you will generally call it with a
inRow parameter one greater than the inRow passed to this procedure. To safely delete the
appropriate number of rows when called with inExpanding equal to false, call

C h a p t e r 1 : B l u g s A P I

107

BLCountDescendants(inRow, inList) and pass the function return value as the
inCount parameter of BLDeleteRows.

Important
Using a technique like this is not a replacement for sound memory management strategies;
it is meant to speed list creation. You should prepare for the worst-case memory scenario,
in which all rows are fully expanded. �

MySecondarySortColumnProc

Supply your implementation of this routine to derive a column number which will be used
for secondary sorting.

pascal UInt16 MySecondarySortColumnProc(UInt16 inPrimaryColumn,
BlugsRef inList)

inPrimaryColumn The column used for the shallowest level of sorting.

inList The list that is being sorted.

Blugs’ default behavior is to sort a list based on the column number of the currently
selected title. This is the primary sort column. By using a function of this type, you can
allow Blugs to use a second column to resolve the ordering of rows which have identical
(for sorting purposes at least) elements in the primary column.

Your function should return the number of the column that should be used as a secondary
sort column. To indicate that Blugs should not use a secondary sort column in this
particular case, return zero.

MyPreDragProc

Supply your implementation of this routine to inspect a drag just as it is beginning.

pascal OSErr MyPreDragProc(DragReference inDragRef,
GWorldPtr inDragGWorld,
RgnHandle inDragRgn,
EventRecord* inEvent,
BlugsRef inList)

inDragRef The drag which is just beginning.

inDragGWorld The GWorld that holds the drag image, if translucent drags are
available on the user’s system. Otherwise nil.

inDragRgn A region enclosing the dragged material.

inEvent The address of an Event Manager record for the event that has
started the drag.

inList The list in which the drag is starting.

This routine is called when a drag is starting in a list, just before Blugs calls TrackDrag.
You can register an InitiatingDragProc if you need to inspect, modify, or prevent

C h a p t e r 1 : B l u g s A P I

108

certain kinds of drag behavior. If your routine returns any value other than noErr, Blugs
aborts and does not call TrackDrag.

MyDragDataProc

Supply your implementation of this routine to add cell data to a drag.

pascal OSErr MyDragDataProc(DragReference inDragRef,
DragItemRef inItem,
BLCell inCell,
BlugsRef inList)

inDragRef The drag which is just beginning.

inItem The drag item which will hold cell data.

inCell The cell whose data your callback routine should add to the drag.

inList The list in which the drag is starting.

This routine is called when a drag is starting in a list, just before Blugs calls TrackDrag.
Blugs calls this routine is called once for each selected cell; your callback is responsible for
adding data to the drag. If you return a result other than noErr, Blugs does not drag
inCell. If your callback rejects all cells, Blugs does not call TrackDrag.

MyDropValidationProc

Supply your implementation of this routine to validate a drop location in a list.

pascal OSErr MyDropValidationProc(DragReference inDragRef,
UInt16 inUnderThisRow,
UInt16 inDisclosureLevel,
BlugsRef inList)

inDragRef The drag which is being tracked in inList.

inUnderThisRow The row under which data may be dropped.

inDisclosureLevel The disclosure level at which data may be dropped.

inList The list in which the drag is being tracked.

Blugs calls your DropValidationProc as it tracks a drag in a list. Whenever Blugs
determines that the drop location and/or drop disclosure level have changed, and the new
target is legal, your routine is called. If you return noErr, Blugs draws the appropriate
insertion caret to show the drop location, and an actual drop will be able to take place
there. If you return any other error code, Blugs does not draw an insertion caret at the
proposed location, and a drop will not be allowed there. The drag may have come from
anywhere (another list, Finder, etc.) but you are dropping into inList. You can respond
as appropriate, but do not dispose of inDragRef.

C h a p t e r 1 : B l u g s A P I

109

MyDropProc

Supply your implementation of this routine to handle a drop in a list.

pascal void MyDropProc(DragReference inDragRef,
UInt16 inUnderThisRow,
UInt16 inDisclosureLevel, BlugsRef inList)

inDragRef The drag which has been dropped in inList.

inUnderThisRow The row under which data is being dropped.

inDisclosureLevel The disclosure level at which data is being dropped.

inList The list in which the drop is happening.

Blugs calls your DropProc when it is time to drop in a list. The drag may have come from
anywhere (another list, Finder, etc.) but you are dropping into inList. You can respond
as appropriate, but do not dispose of inDragRef. Typically you will either add rows to
inList, or move them around, depending on the drag’s origin.

MyPostDragProc

Supply your implementation of this routine to inspect a drag just before it is disposed.

pascal void MyPostDragProc(DragReference inDragRef,
BlugsRef inList)

inDragRef The drag which is just ending.

inList The originating list.

This routine is called when a drag is ending in a list, just before Blugs calls DisposeDrag.
You can register a PostDragProc if you need to inspect the drag to see if, for example,
the drag ended in the Finder trash.

The 'LiSt' Resource

You can use the 'LiSt' resource with BLLoad to create and populate a list without the
overhead of repeated calls to BLAddRows, BLSetCell, BLNewTitleBar, and so on,
when you need to create a list that initially holds data. By using the BLLoad function you
can load the data for a list and (optionally) data for individual rows, columns, cells, title
bars, and titles.

C h a p t e r 1 : B l u g s A P I

110

Figure 7 Structure of the 'LiSt' resource

'LiSt' Resource Bytes

2

2

4

Variable

Number of columns

Number of rows

List flags

Row data entries

List rectangle 8

Default cell size 4

Number of row data entries 2

Number of column data entries 2

Column data entries Variable

Reserved 2

Number of cell data entries 4

Cell data entries Variable

Drag flags 2

Has horizontal title bar 2

Horizontal title bar entries Variable

Has vertical title bar 2

Vertical title bar entries Variable

The 'LiSt' resource consists of the following elements:

� Number of columns. The number of columns the list initially contains.
� Number of rows. The number of rows the list initially contains.
� List flags. A set of flags encoding the list’s initial behavior settings. See the

enumeration “List Flags” on page 20.
� Drag flags. A set of flags encoding the list’s Drag and Drop behavior. See the

enumeration “Drag Flags” on page 22.
� List rectangle. A Mac OS Rect structure with the initial list rectangle. This rectangle

encloses all list elements except the list border and focus if they are present.
� Default cell size. A Mac OS Point structure whose horizontal component encodes the

default column width, and whose vertical component encodes the list’s default row
height.

C h a p t e r 1 : B l u g s A P I

111

� Number of row data entries. The number of blocks of data specific to individual rows
in the list.

� Row data. The number of blocks of row-specific data in the resource. Each entry
contains the initial data for one row. Figure 8 shows the format of a row data entry.

� Reserved. Set to zero.
� Number of column data entries. The number of blocks of data specific to individual

columns in the list.
� Column data. Blocks of data which encode data specific to columns. Each entry

contains the initial data for one column. Figure 9 shows the format of a column data
entry.

� Number of cell data entries. The number of blocks of data specific to individual cells in
the list.

� Cell data. Blocks of data which encode data specific to cells. Each entry contains the
initial data for one cell. Figure 10 shows the format of a cell data entry.

� Has horizontal title bar. true if Blugs is to load a horizontal title bar from the
resource. Figure 11 shows the format of a title bar data entry.

� Horizontal title bar data. This entry is skipped (is zero bytes) if the preceding field is
set to false.

� Has vertical title bar. true if Blugs is to load a vertical title bar from the resource.
Figure 11 shows the format of a title bar data entry.

� Vertical title bar data. This entry is skipped (is zero bytes) if the preceding field is set to
false.

Figure 8 Structure of a row data entry

Row Data Entry Bytes

2

2

2

Disclosure level

Height

Flags

2Reserved

4Identifier

A row data entry encodes initial settings for one row. Each entry contains the following
elements:

• Height. The row height in pixels.
• Disclosure level. The row’s disclosure depth. Ignored if the list is created with the

blDisclosure list flag cleared.
• Flags. A set of flags encoding the row’s initial behavior settings. See “Row Data Flags”

on page 23.
• Reserved. Set to zero.
• Identifier. A custom identifier for the row.

C h a p t e r 1 : B l u g s A P I

112

Figure 9 Structure of a column data entry

Column Data Entry Bytes

2

2

Content type

Width

Flags

4

Reserved

Identifier

2

2

A column data entry encodes initial settings for one column. Each entry contains the
following elements:

• Width. The column width in pixels.
• Content type. The content type for all cells in the column. Ignored if the list is a

spreadsheet.
• Flags. A set of flags encoding the column’s initial behavior settings. See “Column Data

Flags” on page 23.
• Reserved. Set to zero.
• Identifier. A custom identifier for the column.

Figure 10 Structure of a cell or title data entry

Cell/Title Data Entry Bytes

2

4

2

Variable

Content type

Data flavor

Data size

Data

Align to 4-byte boundary 0 to 3

A cell data entry encodes initial settings for one cell or title. Each entry contains the
following elements:

• Data flavor. The flavor of the data to be installed in the cell.
• Content type. The content type for the cell or title. Ignored if the list is a table (for cells)

or if the title bar has the blTitlesOneContentType flag bit set (for titles).
• Data size. The number of bytes of data to follow.
• Data. The data to be installed.

C h a p t e r 1 : B l u g s A P I

113

Figure 11 Structure of a title bar entry

Title Bar Entry Bytes

2

2

2

Variable

Number of title data entries

Thickness

Content type

Title data entries

Flags 2

� Number of title data entries. The number of title data blocks contained in the title bar
data entry.

� Thickness. The number of pixels high (horizontal title bars) or wide (vertical title bars)
the title is initially.

� Features. A set of flags encoding the title bar’s behavior. See “Title Bar Flags” on page
24.

� Content type. The content type for all titles in the title bar. Ignored if the
blTitlesOneContentType bit is set in the Features field is not set.

� Title data entries. Each entry contains the initial data for one title in the title bar. Figure
10 shows the format of a cell/title data entry.

C h a p t e r 2 : C o n t e n t H a n d l e r s

114

Chapter 2

Content Handlers

This chapter describes the Blugs content handler architecture. You should read this chapter
if you intend to modify the handlers provided with the Blugs SDK, or wish to write one
from scratch.

You should be familiar with the material in Chapter 1 and thus familiar with the behavior
of Blugs lists before you try to master the information to follow.

Introduction to Content Handlers

Fundamentally, content handlers provide Blugs with the code to display and allow user
interaction with list data. As mentioned in the Preface, content handlers play a role similar
to the List Manager’s 'LDEF' code resources. Both list definition procedures and content
handlers respond to messages sent by the list engine. The most important of these
messages is arguably the message which means draw your content. In other respects content
handlers are like control definition functions. Control definitions can, for example,
calculate and return a region describing the interface item; Blugs content handlers can
optionally support the same kind of functionality.

The simplest content handler need only respond to four messages: get features, set, get,
and draw. Typically, a handler will need to allocate storage for its contents, but this is not
necessary if the handler needs to store four bytes of data or less.

What Content Handlers Can’t Do

There are two important limitations on what a content handler function can do. The first
limitation is on the creation of “real” Control Manager controls in cells or titles. This
should be avoided. One problem with using controls is that they are by nature “owned” by
the window in which they are created. As a result, the Control Manager can sidestep Blugs
and draw controls at inappropriate times. An example of this is when a list that contains a
control in a cell is hidden, and the application calls DrawControls for the list’s host
window. Although the list is invisible, the control is drawn. Blugs currently has no means
of informing a handler that its cells are becoming invisible. Another problem scenario is
when a control in a cell needs to be drawn partially obscured as a result of being scrolled
partly out of view; it would be extremely difficult to manage the necessary clipping
without requiring the Appearance Manager. The third problem area with controls is the
issue of GWorlds, since Blugs draws cells into a GWorld and blits them to the host
window. Prior to Appearance 1.0, there is no sanctioned way to draw a control in a
GWorld. This makes it difficult for the programmer since not only is the control in the
“wrong” port, it would also have to be moved and redrawn manually every time the list
was scrolled. (This could require the developer to hack around Blugs and possibly call the

C h a p t e r 2 : C o n t e n t H a n d l e r s

115

content handler directly from the application. Needless to say, we are not in favor of such
an approach.) Blugs uses “fake” controls to draw titles, grow boxes, and sort buttons. Since
the Content Handler architecture allows your handler to intercept user interaction with cell
contents, you can approach the power of the Control Manager with none of the
aforementioned limitations.

The second major limitation on content handlers stems from the fact that the current
version of Blugs is not reentrant. Under normal circumstances this is not a problem; the
host application calls Blugs to possibly change the state of the list. When a callback routine
like a content handler calls Blugs, however, it is possible that a change to the list’s state at a
deep level of the calling chain will result in invalid data at a shallower level, such as the
internal Blugs routine that invoked the handler. (In a sense, Blugs would be called from
two directions at once.) Also, because handlers (theoretically) have access to the entire
Blugs API, a handler could call a Blugs routine that calls the same handler recursively,
possibly resulting in an infinite loop. As a partial solution to the problem, Appendix A lists
the Blugs routines that cannot be called from a content handler. The debug libraries
enforce the restrictions by setting an internal flag when a content handler is called and
asserting if anything in the restricted API is called while the flag is set. The non-debug
libraries do not do this checking, so it is in your best interest to always use the debug
libraries for non-distribution builds. Bear in mind that cell data is owned (at least
indirectly) by the list, not the other way around; this data probably should not have the
power to fundamentally and directly change the state of its container. We feel this makes a
good deal of sense, but we are unable to enforce it completely.

Writing a Content Handler

The form a content handler takes resembles that of other single-entry-point multi-task
routines like control definition functions. Your public routine will generally dispatch to
internal routines by means of a switch statement on the input message.

Responding to Messages

This section discusses how your content handler should repond to each message described
in the section “Content Handler Messages” on page 128.

Responding to blHandlerInitMsg

Blugs calls your content handler with blHandlerInitMsg in response to
BLRegisterContentHandler. First, perform initialization and setup tasks, including
but not limited to memory allocation and Gestalt checks. Second, return an integer that
encodes your handler’s capabilities. OR-combine zero or more of the enumerated “Content
Handler Features” (page 127) and return it as your handler’s function result.

Do not try to draw anything at this point. The host application is likely still in its “Display
Splash Screen” stage, and there are probably no lists in existence yet anyway.

Responding to blHandlerDeinitMsg

Your content handler is called with blHandlerDeinitMsg when the host calls BLExit.
At this point you should deallocate and deinitialize global settings. Do so under the
assumption that BLEnter will be called again, and your handler will receive
blHandlerInitMsg all over again. Do not assume the host application is shutting down.
(Thinking of your handler in the context of a Photoshop plug-in might be helpful.)

C h a p t e r 2 : C o n t e n t H a n d l e r s

116

You may not wish to deinitialize such global data as Gestalt results or font numbers,
which are likely to be unchanged across initializations.

Responding to blCellInitMsg

Your handler responds to blCellInitMsg when its associated content type is assigned to
a cell or title. This message does not correspond to any particular data assignment, but you
should initialize the cell to some default empty value (such as a zero-length string).
Subsequent calls with blCellSetDataMsg (see below) will install data. Keep in mind
that in some circumstances your cell may be drawn before data is installed; your handler
needs to detect the absence of data. In the example below, the handler calls
NewHandleClear so that it can look for nil when called on to draw.

Blugs internally stores the ioStorage field of the parameter block, for subsequent use by
your handler . Most handlers must allocate memory to hold cell data. Typically you will
allocate a handle and pass it back to Blugs in ioStorage. In some circumstances you will
not need to allocate: if your data is always four bytes or less you can store the value
directly in the four bytes of ioStorage.

Example

void MyAllocateStorage(BLHandlerParamPtr ioParam)
{

Handle myStorage;

myStorage = NewHandleClear(sizeof(MyHandlerStruct));
ioParam->ioStorage = myStorage;

}

Responding to blCellDeinitMsg

Your handler responds to blCellDeinitMsg when a cell or title stops being associated
with your content type, whether because it was deleted, or perhaps just assigned a
different content type. Dispose of any memory allocated to store cell data. You do not need
to set the ioStorage field of the parameter block to nil; Blugs does that automatically
after calling your handler. (Yes, this means you have no choice but to dispose of allocated
memory, or else leak it. When you receive blCellDeinitMsg you do not have the option
of “hanging on to the data for a while longer.”)

If your handler supports inline editing, keep in mind that an inline session may not be
terminated before your handler is called with this mesage. In other words, you may need
to check your data storage and dispose of the TextEdit/MLTE/WASTE environment if
there is an inline session going on when the cell is deleted.

Example

void MyDisposeStorage(BLHandlerParamPtr ioParam)
{

Handle myStorage;

myStorage = ioParam->ioStorage;
if (myStorage)
{

C h a p t e r 2 : C o n t e n t H a n d l e r s

117

if ((*myStorage)->inlineTE)
TEDispose((*myStorage)->inlineTE);

DisposeHandle(myStorage);
}

}

Responding to blCellDrawMsg

blCellDrawMsg is the heart and soul of your content handler. Based on the cell’s data,
rectangle, indent, and (possibly) selection status, your handler draws the cell in the current
port. Under normal circumstances this port is a GWorld; however, if the cell is the target of
an inline edit session the port is the host window instead. You should use GetGWorld and
SetGWorld instead of GetPort and SetPort. (Mixing the two types of calls seems to
cause weird results, and Inside Macontosh discourages it; Blugs always uses the GWorld
calls.) Be sure to save and restore the current GWorld if you need to change ports. You
need not restore the drawing state in any other way.

You do not need to erase anything before drawing. Blugs overwrites the entire cell
rectangle when it draws the cell background before calling your handler.

If your handler reports that it draws its own hiliting when the cell is selected, by setting the
blWantsHilite feature flag, then it should refer to the value contained in the
inIsSelected field of the parameter block and draw as appropriate. Otherwise Blugs
draws hiliting as part of the cell’s background before your handler is called upon to draw.

Generally, your handler should draw text in the current foreground color, particularly
when drawing titles. Title text should invert when the title is pressed, so Blugs sets the
foreground color to an appropriate shade before calling the handler. When the list is
inactive, Blugs sets the foreground to a shade appropriate for inactive text. For consistency,
you should try to use these initial shades, or base your colors on the list’s current state.
Under normal conditions the foreground color is black. Note that a column or title bar’s
ControlFontStyleRec settings can override these colors.

Responding to blCellSetDataMsg

Your handler responds to blCellSetDataMsg by storing a copy of the passed-in data, or
storing data derived from the passed-in data. You should first make sure the data is in a
flavor your handler can import. Then install the data in the ioStorage parameter block
field in an appropriate manner.

Responding to blCellClearDataMsg

Blugs sends blCellClearDataMsg when the host calls BLClearCell. Your handler
responds by setting the cell’s data to some “empty” or default value. How this is done will
vary greatly with the type of data your handler stores. If text is involved, it may be set to a
zero-length string, for example. You should carefully document how, and if, your handler
responds to this message.

Responding to blCellGetDataMsg

Your handler responds to blCellGetDataMsg by first determining the size, in bytes, of
the data in the requested flavor. Second, provided the ioDataBuffer field of the parameter
block is non-nil, by copying data of the requested flavor into that buffer. The ioDataSize
field indicates the maximum number of bytes that can be safely copied to this buffer. Do

C h a p t e r 2 : C o n t e n t H a n d l e r s

118

not copy more than this amount. If there is not enough buffer space, your handler has the
option of copying nothing, or copying a truncated version of the data (this approach might
be useful for strings, useless otherwise). Set the ioDataSize field to the actual number of
bytes copied, or the total number of bytes if ioDataBuffer is nil.

Responding to blCountImportFlavorsMsg

Your handler responds to blCountImportFlavorsMsg by returning the number of data
flavors that the cell in the inCell field can import. In many cases you can assume the
number will be the same for all cells, but you are given the opportunity to determine the
number on a cell-by-cell basis. Blugs sends this message when the host application
requests the information.

Responding to blCountExportFlavorsMsg

Your handler responds to blCountExportFlavorsMsg by returning the number of data
flavors that the cell in the inCell field can export. In many cases you can assume the
number will be the same for all cells, but you are given the opportunity to determine the
number on a cell-by-cell basis. Blugs sends this message when the host application
requests the information.

Responding to blGetIndImportFlavorInfoMsg

Your handler responds to this message by returning the OSType and maximum size in
bytes of the indexed (1-based) data flavor that inCell can import. Return the flavor type
in the ioDataFlavor field of the parameter block, and the maximum size in the
ioDataSize field. In many cases you can assume the size will be the same for all cells, but
you are given the opportunity to determine the number on a cell-by-cell basis. Blugs sends
this message when the host application requests the information.

Responding to blGetIndExportFlavorInfoMsg

Your handler responds to this message by returning the OSType and size in bytes of the
indexed (1-based) data flavor that inCell can export. Return the flavor type in the
ioDataFlavor field of the parameter block, and the size in the ioDataSize field. In
many cases you can assume the size will be the same for all cells, but you are given the
opportunity to determine the number on a cell-by-cell basis. Blugs sends this message
when the host application requests the information.

Responding to blInlineEditRegionMsg

Your handler responds to blInlineEditRegionMsg by modifying the region passed in
the inRegion field of the parameter block. Do not allocate a new region handle, just
manipulate the one passed in. Blugs takes care of allocating and deallocating this region
handle. Blugs uses the region, once you have modified it, to hit-test a cell and determine if
the click should begin an inline session. If clicking anywhere in the cell will start an inline
session, just call RectRgn on the cell’s rectangle. To restrict the region to your cell’s text
rectangle, calculate that rectangle and call RectRgn on it.

Example

void MyGetInlineRegion(BLContentHandlerParamPtr ioParam)
{

C h a p t e r 2 : C o n t e n t H a n d l e r s

119

Rect myTextRect;

myTextRect = MyGetTextRect(ioParam);
RectRgn(ioParam->inRegion, &myTextRect);

}

Responding to blInlineEditBeginMsg

Your handler responds to blInlineEditBeginMsg by establishing an editing
environment appropriate to your content handler. Generally this will be either a TextEdit
record or a WASTE reference. If you use TextEdit, you may encounter QuickDraw/TE
quirks requiring you to fine-tune some metrics calculations — in the example below the
TextEdit record must have its left edge shifted leftward one pixel so the text will be drawn
at the same horizontal offset.

When using TextEdit, it is also recommended you set the port foreground and background
colors to black and white, respectively. You should also set the background pattern to
plain white (using something like BackPat(&qd.white)) in case the host application
is running under Kaleidoscope/OS 8.5+ with a theme that uses patterns. A background
pattern will prevent TextEdit from inverting colors properly when text is selected. It is
recommended you do this color and pattern shuffling when receiving any message for a
cell that is being edited, or is about to be. With WASTE or MLTE all this may not be
necessary.

Example

#define kDestRectExtraRight 1000

void MyInlineEditBegin(BLHandlerParamPtr ioParam)
{

Rect viewRect, destRect;
TEHandle inlineTE;

viewRect = MyTextRectangle(ioParam);
// QuickDraw and TE are off by one!
viewRect.left--;
destRect = viewRect;
// Make sure TE doesn't try to wrap the text to a new line.
destRect.right += kDestRectExtraRight;
inlineTE = TENew(&destRect, &viewRect);
if (inlineTE)
{

Str31 cellString;

// Record my editing environment in the cell’s storage.
MySetDoingInline(true, ioParam->ioStorage);
MySetInlineTextEdit(inlineTE, ioParam->ioStorage);
// Get cell string and initialize TE with it.
MyGetString(ioParam->ioStorage, cellString);
TESetText(&cellString[1], cellString[0], inlineTE);
TEActivate(inlineTE);
TESetSelect(0, 32767, inlineTE);

}
}

C h a p t e r 2 : C o n t e n t H a n d l e r s

120

Responding to blInlineEditKeyMsg

Your handler responds to blInlineEditKeyMsg by passing a key event on to the editing
environment set up for the inline edit session. Generally this will involve TEKey or WEKey.
It may involve some kind of filtering to make sure the input is valid.

Example

Boolean MyInlineEditKey(BLHandlerParamPtr ioParam)
{

TEHandle inlineTE;

inlineTE = MyGetInlineTextEdit(ioParam->ioStorage);
if (inlineTE)
{

UInt8 key;

key = ioParam->inEventMessage & charCodeMask;
// We will not allow more than 31 characters.
if (MyExceedsLengthLimit(key)) SysBeep(30);
else
{

Rect oldRect, newRect;

oldRect = MyGetInlineTextRect(ioParam);
TEKey(key, inlineTE);
// Resize the viewRect to hold the new character.
newRect = MyGetInlineTextRect (ioParam);
// If text rectangle changed, need update.
if (!EqualRect(&oldRect, &newRect))

return blInlineEditKeyUpdate;
}

}
return blInlineEditKeyNoUpdate;

}

Responding to blInlineEditClickMsg

Your handler responds to blInlineEditClickMsg by passing a mouse event on to the
editing environment set up for the inline edit session. Generally this will involve TEClick
or WEClick.

Example

Boolean MyInlineEditClick(BLHandlerParamPtr ioParam)
{

TEHandle inlineTE;

inlineTE = MyGetInlineTextEdit(ioParam->ioStorage);
if (inlineTE)
{

Point where;
Rect textRect;

where = ioParam->inEventWhereLocal;
textRect = MyInlineTextRect(ioParam);
// Send to TextEdit if w/i text rectangle.

C h a p t e r 2 : C o n t e n t H a n d l e r s

121

if (PtInRect(where, &textRect))
{

TEClick(where, false, inlineTE);
return blInlineEditClickHandled;

}
}
// Click outside text; end inline edit session.
return blInlineEditClickNotHandled;

}

Responding to blInlineEditEndMsg

Your handler responds to blInlineEditEndMsg by disposing of its editing environment
(via TEDispose or WEDispose) and anything else it allocated for the inline edit session.
Returns one of the Boolean values blInlineEditEndChanged or
blInlineEditEndNotChanged to indicate whether the contents of the cell changed as a
result of the inline edit session. This return value tells Blugs whether there is a need to re-
sort a sorted list after an inline session has ended.

Example

Boolean MyInlineEditEnd(BLHandlerParamPtr ioParam)
{

TEHandle inlineTE;
Boolean answer = blInlineEditEndNotChanged;

inlineTE = MyGetInlineTextEdit(ioParam->ioStorage);
MySetDoingInline(false, ioParam->ioStorage);
if (inlineTE)
{

UInt8 inlineStringLength;
Str31 string;

// Only count the first 31 characters.
inlineStringLength = (*inlineTE)->teLength;
if (inlineStringLength > 31) inlineStringLength = 31;
// Get the normal cell string.
MyGetString(ioParam, string);
// Check to see if the text changed.
if (IdenticalText(*(*inlineTE)->hText, &string[1]),

inlineStringLength, string[0], nil))
{

// TE contents different from cell storage.
answer = blInlineEditEndChanged;

}
// Copy the inline data to normal storage.
MySetCellFromTE(inlineTE, ioParam);
TEDispose(inlineTE);
MySetInlineTextEdit(nil, ioParam->ioStorage);

}
return answer;

}

C h a p t e r 2 : C o n t e n t H a n d l e r s

122

Responding to blCellRegionMsg

Your handler responds to the optional blCellRegionMsg by modifying the region
passed in the inRegion field of the parameter block. Do not allocate a new region handle,
just manipulate the one passed in. Blugs takes care of allocating and deallocating this
region handle. Blugs uses the region, once you have modified it, to hit-test a cell and hilite
the cell’s contents. If clicking anywhere in the cell will select it, and if selecting the cell
hilites the entire cell, just call RectRgn on the cell’s rectangle. (Or, better yet, do not set the
blWantsRegion flag when reporting handler features so Blugs can do this for you.) To
restrict the region to your cell’s text rectangle, calculate that rectangle and call RectRgn on
it.

Blugs always intersects this region with the cell’s rectangle, so you can safely report a
region outside the cell rectangle.

Example

void MyGetCellRegion(BLContentHandlerParamPtr ioParam)
{

Rect myTextRect;

myTextRect = MyGetTextRect(param->inRect);
RectRgn(param->inRegion, &myTextRect);

}

Responding to blCellClickMsg

Your handler responds to the optional blCellClickMsg by reacting to the mouse event
reported in the inEventWhereLocal field of the parameter block. Further interaction is
possible if your handler runs some kind of a while (StillDown()) loop and tracks
mouse movements. You cannot call out to Blugs to redraw your cell and blit it to screen,
but Blugs sets the current graphics world to the host window before calling your handler
with this message, so you can safely redraw as necessary while running this mini-event
loop. When finished, you can request that Blugs call your handler with blCellDrawMsg
immediately, so you can make sure the state of the cell is in sync with its screen
representation.

If something potentially interesting to the host application happened as a result of this
click, you can pass a notification command back in outCommand; Blugs will send this to
the host’s notification callback if one is installed.

Example

// Handle a click in our cell’s “doodad” (a control-like object of
// sublime appearance that accomplishes wondrous things when
// clicked).
UInt32 MyCellClick(BLContentHandlerParamPtr ioParam)
{

Rect doodadRect;
Boolean wasIn = false;
UInt32 response = 0;

MyDoodadRect(ioParam, &doodadRect);
while (StillDown())
{

Point mouse;

C h a p t e r 2 : C o n t e n t H a n d l e r s

123

GetMouse(&mouse);
// If mouse either entered or left…
if (PtInRect(mouse, &doodadRect) != wasIn)
{

wasIn = !wasIn;
MyDraw(ioParam, (wasIn) ? kThemeStatePressed :

kThemeStateActive);
// Click was definitely in doodad.
response |= blCellClickHandled;

}
}
// Mouse is released…
if (wasIn)
{

MyDoSomethingWondrous();
// Send a command to the app to report that something
// wondrous happened.
ioParam->outCommand = 'Wow!';
// We last drew kThemeStatePressed; need update.
response |= blCellClickUpdate;

}
return response;

}

Responding to blCellIdleMsg

Your handler responds to the optional blCellIdleMsg by reacting to the cursor position:
this message is only sent when the cursor is within your cell’s rectangle. The
inEventWhereLocal field of the parameter block contains the mouse location in local
coordinates. After calling your handler with this message Blugs adjusts the cursor unless
your return value has the blCellIdleAdjustedCursor bit set. That is how you can
prevent Blugs from automatically setting the cursor to the standard QuickDraw arrow.

When this message is sent, the port will already be set to the host window.

Responding to blCellMinSizeMsg

Your handler responds to the optional blCellMinSizeMsg by reporting minimum cell
height and width. These minima apply to all cells of your handler’s associated content
type. You will only receive this message if the blWantsMin feature flag is set. You report
these minima in the outMinWidth and outMinHeight fields of the parameter block. If
your handler does not enforce a minimum in a dimension, set the corresponding field to
zero.

Example

// Report to Blugs that cells have to be at least 100 pixels wide.
void MyGetMin(BLHandlerParamPtr param)
{

param->outMinWidth = 100;
param->outMinHeight = 0; // Who cares how high.

}

C h a p t e r 2 : C o n t e n t H a n d l e r s

124

Responding to blSortMsg

Your handler responds to the optional blSortMsg by returning the result of comparison
between the data passed in the ioStorage and inStorage2 fields of the parameter
block. You return one of the values blSortFirstIsLess, blSortEqual, or
blSortFirstIsGreater to indicate how the first data (in ioStorage) compares with
the second data item (inStorage2). See “Sort Replies” on page 130.The data storage
fields will both be from cells of your content handler’s content type.

Often you will sort text; you can use a Mac OS text utility routine to do so. You may also
need to sort other types of data, such as numbers and dates. You should sort using the
main data item your cell holds. (If your cell data contains a string and a text color for
displaying the string, it’s probably not a good idea to sort by the color value.)

Example

SInt32 MySort(BLHandlerParamPtr param)
{

Str255 storageString, storage2String;
SInt16 result;
SInt32 longResult;

// Extract text from my storage areas.
MyGetStorage1String(param, storageString);
MyGetStorage2String(param, storage2String);
// Compare the strings.
result = CompareString(storageString, storage2String, nil);
// Blugs expects 32-bit result codes!
longResult = result;
return longResult;

}

TextEdit Issues

Whenever there is an inline edit session in progress with your handler involved, you
should make sure to check and update the cell rectangle before drawing the text field. If a
list scrolls while an inline edit is happening, the TextEdit environment must scroll along
with it. This means updating the TextEdit record’s destRect and viewRect before
calling TEUpdate whenever you are called with blDrawMsg.

When drawing, especially with a TextEdit environment, be sure to honor the clipping
region set up by Blugs. Your cell or edit field may be partially clipped if partially scrolled
out of view, under a title bar or whatever. If you need to adjust clipping for your own
drawing needs, make sure to do something like call GetClip, then SectRgn to intersect
the old region with whatever clipping you need, then SetClip to restore everything the
way it was. That way you are maximally conservative about where you allow drawing.

Appearance Themes and TextEdit

TextEdit is not inherently theme-savvy as it was written long before Themes were
invented. The problem is one of hiliting text to show selection, this hiliting does not show
up correctly on patterned themes because there is a background pattern overriding the
background color. Content handlers that use TextEdit need to be built with these issues in
mind since Themes will probably continue to grow in popularity.

C h a p t e r 2 : C o n t e n t H a n d l e r s

125

The way to fix a content handler so it behaves properly in the world of Themes, is to do
exactly what Apple recommends in their Appearance documentation and headers: save
the port’s background pattern and set it to normal white. When TextEdit hilites it will
display correctly. When the handler exits, restore the port’s background pattern. The
example code shows the handler getting the desired white pattern from QuickDraw
globals. (This is not Carbon-savvy code.)

Example

pascal UInt32 MyHandler(BLMessage inMessage,
BLHandlerParamPtr ioParam)

{
UInt32 answer = 0;
PixPatHandle saveBkPixPat;
CGrafPtr port;

if (inMessage >= blInlineEditBeginMsg &&
inMessage <= blInlineEditEndMsg)

{
GetPort((GrafPtr*)&port);
saveBkPixPat = port->bkPixPat;
BackPat(&qd.white);

}
switch (inMessage)
{ } // Do lots of stuff…

if (inMessage >= blInlineEditBeginMsg &&
inMessage <= blInlineEditEndMsg)

{
port->bkPixPat = saveBkPixPat;

}
return answer;

}

C h a p t e r 2 : C o n t e n t H a n d l e r s

126

Summary of Content Handler Parameters

This section summarizes whether the pointer to the handler parameter block is valid and,
if so, which of the parameter block fields are valid for each content handler message. The
first two messages take nil instead of a parameter pointer. That’s why the field cells are
blacked out. For all other messages the parameter pointer is valid. Valid input fields for
those messages are indicated by a bullet (•). Valid output fields (fields in which you pass
data out but contain garbage on input) are indicated by a lower-case “o”.

i
n
C
e
l
l

i
n
R
e
c
t

i
o
S
t
o
r
a
g
e

i
n
S
t
o
r
a
g
e
2

i
o
D
a
t
a
B
u
f
f
e
r

i
o
D
a
t
a
S
i
z
e

i
o
D
a
t
a
F
l
a
v
o
r

i
n
R
e
g
i
o
n

i
n
L
i
s
t

blHandlerInitMsg
blHandlerDeinitMsg
blCellInitMsg • • •
blCellDeinitMsg • • •
blCellDrawMsg • • • •
blCellSetDataMsg • • • • • • •
blCellClearDataMsg • • •
blCellGetDataMsg • • • • • •
blCountImportFlavorsMsg • • •
blCountExportFlavorsMsg • • •
blGetIndImportFlavorInfoMsg • • o o •
blGetIndExportFlavorInfoMsg • • o o •
blInlineEditRegionMsg • • • • •
blInlineEditKeyMsg • • • •
blInlineEditClickMsg • • • •
blInlineEditEndMsg • • • •
blCellRegionMsg • • • •
blCellClickMsg • • • •
blCellIdleMsg • • • •
blCellMinSizeMsg • • •
blCellSortMsg • • • •
blCellSearchMsg • • • • • •

C h a p t e r 2 : C o n t e n t H a n d l e r s

127

i
n
E
v
e
n
t
W
h
e
r
e
L
o
c
a
l

i
n
E
v
e
n
t
M
e
s
s
a
g
e

i
n
E
v
e
n
t
M
o
d
i
f
i
e
r
s

o
u
t
C
o
m
m
a
n
d

i
n
I
n
d
e
x

i
n
I
n
d
e
n
t

o
u
t
M
i
n
W
i
d
t
h

o
u
t
M
i
n
H
e
i
g
h
t

i
n
V
a
r
i
a
t
i
o
n
C
o
d
e

i
n
I
s
S
e
l
e
c
t
e
d

blHandlerInitMsg
blHandlerDeinitMsg
blCellInitMsg •
blCellDeinitMsg •
blCellDrawMsg • • •
blCellSetDataMsg • •
blCellClearDataMsg •
blCellGetDataMsg •
blCountImportFlavorsMsg •
blCountExportFlavorsMsg •
blGetIndImportFlavorInfoMsg • •
blGetIndExportFlavorInfoMsg • •
blInlineEditRegionMsg • •
blInlineEditKeyMsg • • • •
blInlineEditClickMsg • • • •
blInlineEditEndMsg • •
blCellRegionMsg • • •
blCellClickMsg • • o • •
blCellIdleMsg • • •
blCellMinSizeMsg o o •
blCellSortMsg •
blCellSearchMsg •

Content Handler Reference

Types and Constants

This section describes the types and constants specific to the Blugs Content Handler
Architecture.

Content Handler Features

Your content handler returns the result of ORing zero or more of these flags when it is first
initialized with blHandlerInitMsg. You use these flags to report your handler’s special
capabilities, if any.

enum
{

C h a p t e r 2 : C o n t e n t H a n d l e r s

128

blWantsClick = 0x00000001,
blWantsIdle = 0x00000002,
blWantsInlineEdit = 0x00000004,
blWantsInlineReturn = 0x00000008,
blWantsInlineFocus = 0x00000010,
blWantsSort = 0x00000020,
blWantsMin = 0x00000040,
blWantsRegion = 0x00000080,
blWantsHilite = 0x00000100

};

Constant Descriptions
blWantsClick Set to have Blugs call the handler with blCellClickMsg

when the user clicks in the cell’s rectangle or (if the
handler supports it) the cell’s content region. Handler can
run its own mini event loop to respond to subsequent
dragging and other interaction.

blWantsIdle Set if the handler wants idle events (passed to Blugs via
BLIdle) passed on to the content handler when the
cursor is over the cell.

blWantsInlineEdit Set if handler can do inline text editing.
blWantsInlineReturn Set if return and enter keys should be sent to the handler

during inline edit sessions. By default, return and enter
end the session. Set this bit to support multi-line edit
fields.

blWantsInlineFocus Set if Blugs should draw a focus box around inline edit
text. Ignored if the handler does not support inline
editing.

blWantsSort Set if handler can do data comparison.
blWantsMin Set if handler can return a minimum height and/or width

for cells.
blWantsRegion Set if the handler calculates a region for hit-testing,

hiliting, and drag-selection that is not the same as the cell
rectangle. Blugs sends blCellRegionMsg only if this bit
is set.

blWantsHilite Set if the handler does its own hiliting when drawing a
selected cell.

Content Handler Messages

Below are all of the messages Blugs may send in calling your content handler. The message
determines what action your content handler should take, and which fields of the Content
Handler Parameter Block are valid.

typedef UInt16 BLMessage;
enum
{

/* These are the required messages: */
blHandlerInitMsg,
blHandlerDeinitMsg,
blCellInitMsg,
blCellDeinitMsg,
blCellDrawMsg,
blCellSetDataMsg,
blCellClearDataMsg,
blCellGetDataMsg,

C h a p t e r 2 : C o n t e n t H a n d l e r s

129

blCountImportFlavorsMsg,
blCountExportFlavorsMsg,
blGetIndImportFlavorInfoMsg,
blGetIndExportFlavorInfoMsg,
/* These 5 are only sent if blWantsInlineEdit flag is set: */
blInlineEditRegionMsg,
blInlineEditBeginMsg,
blInlineEditKeyMsg,
blInlineEditClickMsg,
blInlineEditEndMsg,
/* End of inline edit stuff */
/* These are optional: */
blCellRegionMsg,
blCellClickMsg,
blCellIdleMsg,
blCellMinSizeMsg,
blCellSortMsg,
blCellSearchMsg

};

Constant Descriptions
blHandlerInitMsg Sent when the host application calls

BLRegisterContentHandler. Allocate any needed
memory, do setup tasks, and return handler features.

blHandlerDeinitMsg Sent when the host application calls BLExit. Deallocate
any global memory.

blCellInitMsg Sent when a cell is created. Handler should allocate
storage for future data if necessary and initialize as
appropriate.

blCellDeinitMsg Sent when a cell is removed from the list. Handler must
release memory allocated for that cell.

blCellDrawMsg Draw content in the current port.
blCellSetDataMsg Stores data of the specified flavor in a cell.
blCellClearDataMsg Reset a cell to its default or initial data content.
blCellGetDataMsg Gets cell data of the specified flavor.
blCountImportFlavorsMsg Return the number of data flavors the cell can import.
blCountExportFlavorsMsg Return the number of data flavors the cell can export.
blGetIndImportFlavorInfoMsg

Get OSType and maximum size for the indexed (1-based)
data import flavor.

blGetIndExportFlavorInfoMsg
Get OSType and maximum size for the indexed (1-based)
data export flavor.

blInlineEditRegionMsg Only sent if blWantsInlineEdit feature flag is set.
Blugs asks for a region, and uses that for hit-testing to
determine whether a click starts an inline edit session. It
also uses the region for drawing the focus around inline
text. Blugs allocates and disposes of this region handle.

blInlineEditBeginMsg Only sent if blWantsInlineEdit feature flag is set. An
inline edit session has begun. Allocate a
TextEdit/WASTE/MLTE environment in the current port
to handle subsequent inline edit events.

blInlineEditKeyMsg Only sent if blWantsInlineEdit feature flag is set.
Handle a key event during an inline edit.

blInlineEditClickMsg Only sent if blWantsInlineEdit feature flag is set.
Handle a click in the inline edit cell.

blInlineEditEndMsg Only sent if blWantsInlineEdit feature flag is set. Edit
session is over. Update cell contents if appropriate and

C h a p t e r 2 : C o n t e n t H a n d l e r s

130

dispose of TextEdit/WASTE/MLTE environment. See
“Other Handler Replies” (below) for the
blInlineEditEndChanged and
blInlineEditEndNotChanged constants that your
handler can return.

blCellRegionMsg Only sent if blWantsRegion feature flag is set. Blugs
asks for a region, and uses that for hit-testing, hiliting the
cell contents, and drag-selecting cells. Blugs allocates and
disposes of this region handle.

blCellClickMsg Only sent if blWantsClick feature flag is set. Content
handler can run a sort of event loop based on mouse
movement and redraw as necessary to allow the user to
manipulate the cell.

blCellIdleMsg Only sent if blWantsIdle feature flag is set. Sent when
the host application calls BLIdle and the cursor is over
the cell or title. See “Other Handler Replies” (below) for
the blCellIdleAdjustedCursor and
blCellIdleUpdate flags that your handler can return.

blCellMinSizeMsg Only sent if blWantsMin feature flag is set; minima apply
to all cells of your handler’s type. Return minima in
outMinWidth and outMinHeight fields of the
parameter block. Set to zero to indicate no minimum in
that dimension.

blSortMsg Only sent if blWantsSort feature flag is set. Handler
compares data elements passed in the ioStorage and
inStorage2 fields of the parameter block. See “Sort
Replies” (below) for the appropriate return values.

blSearchMsg Only sent if blWantsSort feature flag is set. Handler
compares its data with the data passed in the parameter
block. See “Search Replies” (below) for the appropriate
return values.

Sort Replies

Your content handler returns one of these constants when called with blCellSortMsg.
These values indicate the relationship between the data referenced by the storage areas
ioStorage and inStorage2 passed in the parameter block.

enum
{

blSortFirstIsLess = -1L,
blSortEqual = 0,
blSortFirstIsGreater = 1

};

Constant Descriptions
blSortFirstIsLess ioStorage is less than inStorage2.
blSortEqual ioStorage and inStorage2 are equal.
blSortFirstIsGreater ioStorage is greater than inStorage2.

Search Replies

Your content handler returns one of these constants in response to blCellSearchMsg.
These values indicate the relationship between the cell data and the data passed to the
handler.

C h a p t e r 2 : C o n t e n t H a n d l e r s

131

enum
{

blSearchCellDataIsLess = -1L,
blSearchEqual = 0,
blSearchCellDataIsGreater = 1

};

Constant Descriptions
blSearchCellDataIsLess Cell data is less than data passed to handler.
blSearchEqual Cell data and search data are equal.
blSearchCellDataIsGreater Cell data is greater than data passed to handler.

Other Handler Replies

These are miscellaneous constants returned in response to blCellDrawMsg,
blInlineEditKeyMsg, blInlineEditClickMsg, blInlineEditEndMsg,
blCellClickMsg, and blCellIdleMsg. These values specify additional tasks that Blugs
should or should not do after calling the handler.

enum
{

blInlineEditKeyUpdate = true,
blInlineEditKeyNoUpdate = false,
blInlineEditClickHandled = true,
blInlineEditClickNotHandled = false,
blInlineEditEndChanged = true,
blInlineEditEndNotChanged = false,
blCellClickUpdate = 1 << 0,
blCellClickHandled = 1 << 1,
blCellIdleAdjustedCursor = 1 << 0,
blCellIdleUpdate = 1 << 1

};

Constant Descriptions
blInlineEditKeyUpdate Blugs needs to call the handler with

blCellDrawMsg.
blInlineEditKeyNoUpdate No need for blCellDrawMsg.
blInlineEditClickHandled Handler processed the inline edit click.
blInlineEditClickNotHandled Handler did not process the click.
blInlineEditEndChanged The cell’s contents changed as a result of the inline

edit.
blInlineEditEndNotChanged The cells contents were unchanged after the inline

edit ended.
blCellClickUpdate Blugs needs to call the handler with

blCellDrawMsg after handling click.
blCellClickHandled Blugs should leave cell selection as it was before:

the click was strictly for manipulating something
in the cell, not for selecting and deselecting list
items.

blCellIdleAdjustedCursor Handler adjusted cursor; Blugs should not adjust
the cursor.

blCellIdleUpdate Blugs needs to call the handler with
blCellDrawMsg.

C h a p t e r 2 : C o n t e n t H a n d l e r s

132

Content Handler Parameter Block

When Blugs calls a content handler, it passes the address of a parameter block of this type.
Generally this parameter block is used to pass data to the handler, but in many cases its
fields are also used to pass data from the handler back to Blugs.

typedef struct
{

BLCell inCell;
Rect inRect;
Handle ioStorage;
Handle inStorage2;
Ptr ioDataBuffer;
UInt32 ioDataSize;
OSType ioDataFlavor;
RgnHandle inRegion;
BlugsRef inList;
Point inEventWhereLocal;
UInt32 inEventMessage;
EventModifiers inEventModifiers;
BLNotificationCommand outCommand;
UInt16 inIndex;
UInt16 inIndent;
UInt16 outMinWidth;
UInt16 outMinHeight;
UInt16 inVariationCode;
Boolean inIsSelected;

} BLHandlerParamBlock, *BLHandlerParamPtr;

Field descriptions
inCell The cell (or title) upon which the handler is to operate.
inRect The cell rectangle, in local coordinates.
ioStorage A data area the handler can use to store cell data (typically

via handle).
inStorage2 Like ioStorage, except it is only used when the handler

is called with blCellSortMsg. The handler interprets
the two data storage areas and returns a value indicating
which should come first. Note that inStorage2 is only
valid for blCellSortMsg; its contents are undefined
otherwise.

ioDataBuffer A pointer to a buffer of memory used to hold data being
passed to or from the content handler.

ioDataSize The size of the data buffer. This represents the size of data
being passed to the handler, or the maximum number of
bytes that can be passed out from it. You return an actual
byte count in this field when exporting data.

ioDataFlavor A four-character code for the data passed in or requested.
inRegion A region handle which you can adjust to reflect your cell

content region. Modify the existing region; do not allocate
a new region (that is, do not call NewRgn).

inList The Blugs list whose cells your handler is operating on.
inEventWhereLocal The location of a click event, in coordinates local to the

host window.
inEventMessage The message field of an EventRecord your content

handler can respond to. (Typically a keyboard event.)
inEventModifiers The modifiers field of an EventRecord your content

handler can respond to. (Typically a keyboard event.)

C h a p t e r 2 : C o n t e n t H a n d l e r s

133

outCommand A command reported back to the host application by
means of a notification.

inIndex Used when Blugs requests a list of data flavors by calling
your handler repeatedly. You return the (1-based) indexed
flavor the cell can export.

inIndent The number of pixels from the left edge of the cell’s
rectangle to indent cell content when drawing.

outMinWidth The minimum width of your handler’s cells or titles.
Return zero to indicate there is no minimum in this
dimension.

outMinHeight The minimum height of your handler’s cells or titles.
Return zero to indicate there is no minimum in this
dimension.

inVariationCode A host application-supplied value associated with the
handler on a global level. Your handler may define special
meanings for this variation code, or ignore it.

inIsSelected true if the cell or title is selected.

Content Handler Routine

The one routine in the Blugs content handler architecture is the user-defined routine
MyContentHandler. This is the prototype for every content handler you will write.

MyContentHandler

Supply your version of this routine to handle cell and title content.

UInt32 MyContentHandler(BLContentHandlerMessage inMessage,
BLContentHandlerParamPtr ioParam)

inMessage A content handler message.

ioParam The address of a BLContentHandlerParamBlock structure
holding the parameters appropriate to inMessage.

A p p e n d i x A : R e s t r i c t e d A P I

134

Appendix A

Restricted API

This appendix enumerates the Blugs routines that, because of reentrancy issues, are
deemed too dangerous to call from within a content handler. As discussed in the section
“What Content Handlers Can’t Do” on page 114, certain Blugs routines can result in stale
data on the stack when called by content handlers, or could call the same handler
recursively, possibly resulting in an infinite loop.

What follows are the Blugs API routines that can change the numbering of rows, columns,
or cells, or invoke a content handler, or in general cause bad results when called by a
content handler.

The debug libraries will alert you if you try to call one of these routines from a content
handler. Furthermore, the routines will return immediately without executing, typically
returning paramErr. The non-debug builds will execute without warning, so beware!

C O N T E N T H A N D L E R S

135

BLExit
BLNew
BLLoad
BLUnflatten
BLDispose
BLAddRows
BLAddColumns
BLDeleteRows
BLDeleteColumns
BLSetRowFlags
BLSetColumnFlags
BLMoveRows
BLMoveColumns
BLMoveMarkedRows
BLSetRect
BLSetRowHeight
BLSetColumnWidth
BLSetIndent
BLClick
BLKey
BLIdle
BLSelectCell
BLSelectOneCell
BLDeselectCell
BLDeselectAll
BLTrackDrag
BLReceiveDrag
BLSetActive
BLMakeUserPaneControl
BLDisposeUserPaneControl
BLBeginInlineEdit
BLEndInlineEdit
BLSetCellContentType
BLGetCellData
BLSetCellData
BLClearCell
BLSort
BLSearch
BLExpandRow
BLCollapseRow
BLNewTitleBar
BLSetVisible
BLPageUp
BLPageDown

A p p e n d i x B : M i g r a t i o n

136

Appendix B

Migration

This appendix attempts to help ease migration from the Mac OS List Manager to Blugs.
Because Blugs is so different from the List Manager, it has been impossible to formulate a
parallel API. In some ways Blugs has been designed to follow the Apple's API, for
example, in parameter ordering — the list parameter is always last. Yet in most cases
adopters must deal with additional functionality, additional parameters, restricted access
to data, etc.

Classic API Comparison

This section compares the pre-Carbon List Manager with Blugs.

Routine Comments
LNew Substantially different from BLNew. Use caution.
LAddColumn,
LAddRow

Note plural in the routine names, which is more accurate. Blugs
returns an error code; LM returns the first added element. The
latter information can be derived in the (I expect) rare case when it
is needed. The disclosure option parameter for BLAddRows is only
needed in some casees, so we provide the BLAddRowsCompat
macro that resolves to BLAddRows with the
blDisclosureOptionSame constant.

LGetSelect Use BLIsCellSelected to query a single cell. Use BLGetSelect
to query a range of cells.

LLastClick Currently we have no comparable routine. Is a routine like this
necessary? We plan to introduce better click event reporting, so in
the future it definitely won’t be necessary. For now, we have a field
in the list record called lastClickCell that could be made
available with an accessor BLLastClick.

LNextCell Currently we have no comparable routine. Identical functionality
can be made available if desired.

LSearch BLSearch is different because it searches a single column only. To
search all cells, it would be necessary to use brute-force. In the
future, it’s possible BLSearch will become more like LSearch.
Less automation but more control for the app. Still, it will likely
remain single-column-based.

LSize BLSetRect is more flexible because it allows the list to be moved.
But we could offer a BLSize or BLSetSize routine that keeps the
upper left corner intact.

LSetDrawingMode,
LDoDraw

Equivalent to BLSetAutodraw. The macros BLSetDrawingMode
and BLDoDraw resolve to BLSetAutodraw.

LScroll A problem since with variable row/column metrics Blugs uses

A p p e n d i x B : M i g r a t i o n

137

pixel offsets. If we add a BLScroll routine, it will have to take
pixels, not row and column counts.

LAutoScroll This is accomplished by getting the first selected cell using
BLGetSelect, and then calling BLMakeVisible.

LActivate The BLActivate macro resolves to BLSetActive.
LCellSize To achieve this functionality, call BLSetRowHeight once for each

row, and BLSetColumnWidth for each column. (Use
BLCountRows and BLCountColumns to get the data bounds.)

LClick We have to take more parameters. And we will probably make the
call even more elaborate in the future.

LAddToCell Blugs has no comparable routine. Use BLSetCellData.
LClrCell The BLClrCell macro resolves to BLClearCell.
LGetCell,
LSetCell

The additional inDataFlavor param is required. We may be able
to relocate the inCell parameter immediately before the
BlugsRef to make it more like the LM calls.

LRect BLCellRect
LSetSelect Equivalent to BLSetSelect.
LDraw Would this ever be needed?
LGetCellDataLocation The host app is forbidden access to this information. Use

BLGetCellData.

Carbon API Comparison

This section compares the Carbon List Manager with Blugs. The Carbon API adds accessor
functions.

Routine Comments
GetListViewBounds Our rects are different, but we have the ability to get rect of

whole list or cell area.
GetListPort We may want to provide this, though it should be called

BLGetWindow.
GetListCellIndent Blugs indent is horizontal-only, we’ve never addressed

whether we want or need vertical indentation. Probably not,
given variable row heights and content handler diversity.

GetListCellSize We may want to provide this, but I don't know how useful it
would be. It refers to the default cell size.

GetListVisibleCells Candidate for inclusion.
GetListVerticalScrollBar,
GetListHorizontalScrollBar

Absolutely not!

GetListActive Same as BLIsActive. The macro BLGetListActive
resolves to BLIsActive.

GetListClickTime,
GetListClickLocation

When BLClick has better event reporting, this kind of
information will be returned. Probably not stored in the list.

GetListMouseLocation I don’t know what this is for!
GetListRefCon,
GetListUserHandle,
SetListRefCon,
SetListUserHandle

Try something like this:

#define blListRefConKey 'refc'
#define blListUserHandleKey 'uhnd'
SInt32 BLGetListRefCon(BlugsRef inList)
{

OSErr err;
SInt32 data = nil;
err = BLGetUserData(blListRefConKey,

A p p e n d i x B : M i g r a t i o n

138

&data, inList);
return data;

}
GetListDataBounds Try something like this:

void BLGetListDataBounds(Rect* outBounds,
BlugsRef inList)

{
outBounds->top = 0;
outBounds->left = 0;
outBounds->bottom =

(SInt16)BLCountColumns(inList);
outBounds->right =
 (SInt16)BLCountRows(inList);

}

Or this…

#define BLGetListDataBounds(rPtr,list) \
SetRect(rPtr, 0, 0, \
(SInt16)BLCountRows(inList), \
(SInt16)BLCountColumns(inList))

GetListDataHandle No equivalent.
GetListFlags,
GetListSelectionFlags

Maybe; they’re a single unit in Blugs, though.

SetListViewBounds Maybe provide a macro to BLSetRect.
SetListPort Interesting idea. Bad idea. (Remember those scroll bars?) The

closest we could come to that is something like
BLUpdateInCurrentPort.

SetListCellIndent Maybe provide a macro to BLSetIndent. See notes on
GetListCellIndent.

SetListClickTime,
SetListClickLoop,
SetListLastClick,
SetListFlags,
SetListSelectionFlags

Nope. Maybe later.

Compatibility Macros

These macros allow you to use some names that are a little more List Manager -like. You
can find them at the end of Blugs.h.

Macro Resolves to
BLSetDrawingMode BLSetAutodraw
BLDoDraw BLSetAutodraw
BLAddRowsCompat(count,row,list) BLAddRows(blDisclosureOptionRoot,

count,row,list)
BLActivate BLSetActive
BLGetListActive BLIsActive
BLClrCell BLClearCell

A p p e n d i x C : B l u g s F A Q

139

Appendix C

Blugs FAQ

What follows is a more informal discussion about the Blugs project. (Note that I made up
some most of the questions myself.)

Blugs FAQ

What is the history of Blugs? How did Blugs come about?

Blugs is an amalgam of development projects. The most primitive skeleton of Blugs was
begun in late 1997 by Moses Hall to provide list management for linguistic database
applications. The earliest Blugs versions included a number of rudimentary built-in
content handlers, and in general bore little resemblance to Blugs as it is today. When Kyle
Hammond and Moses decided join forces, Kyle’s A List served as a more mature code base
for extending Blugs.

So Blugs is a commercialized version of the A List?

No, although there is a certain amount of A List code in Blugs. Very little of the original
Blugs code still exists in the release version, and very little of the A List code has been
imported intact. Kyle wrote almost all of the title drag-reordering code. (One of the reasons
it works so well!) And most of the start-drag logic is his. I went in and did a lot of the
track-content-drag code later on. A lot of the basic scrolling, GWorld, blitting nitty-gritty
code is borrowed from the A List originally. Kyle also did a lot of of the early work on
Carbonization since I was clueless about Carbon. (OK, no jokes about how little times have
changed.)

How does Blugs compare with StoneTable?

I (obviously) cannot offer an unbiased comparison. I have not used StoneTable, although it
has gotten a favorable review in MacTech magazine. Blugs has certain capabilities
StoneTable does not have (at time of writing), like the ability to sort a disclosure list and
preserve hierarchy. Based only on the StoneTable demo, I feel Blugs has a dramatically
better user interface. Also, Blugs does not use code resources at all. On the other hand,
StoneTable is a mature product with many users. StoneTable also has a PowerPlant
interface, which Blugs does not. Blugs is fairly generic, where StoneTable seems to be
targeted more at true spreadsheet applications. StoneTable is patterned after the List
Manager API to make the transition easier, where Blugs does not offer an easy transition
but rather concentrates on flexibility. It appears that Stone Table is designed to work more
like Excel, whereas Blugs mimics the Finder in many ways.

A p p e n d i x C : B l u g s F A Q

140

I hope that an interested third party will write a critical comparison of Blugs and
StoneTable.

How does Blugs compare with DataBrowser?

Again, I can’t offer an unbiased comparison. Blugs is more flexible in many respects. But
DataBrowser is tightly integrated into OS X and the later CarbonLib versions and it’s free.
On the other hand, Blugs supports legacy machines going way back. DataBrowser has a
history of being incredibly buggy, sort of like Nav Services 1.0.

Again, I hope that a third party will write a critical comparison.

How will Blugs change in the future?

We can’t say for sure, but one thing we want to accomplish is greater reentrancy. Ideally,
we should see Appendix A’s restricted API dwindle down to nothing. The UID mechanism
is the first big step in that direction.

Some sophisticated table-management products (like AreaList Pro for 4D) allow for
“lockers”, or rows/columns that remain visible when the main list view is scrolled. You
could call this a “split pane.” We will implement this in a future version, since we know
(from experience with CodeWarrior) a valuable feature when we see one.

We will definitely migrate from the current list resource format to a more flexible
Collection/Stockpile format.

The BLCell type is becoming seriously overloaded (with the introduction of scroll bar
widgets) and in the future APIs will most likely start to access list parts by BLPart and
BLCell (or perhaps a new name like BLCoordinate) rather than by BLCell alone. This
would mean being able to collapse routines like BLGetCellData and BLGetWidgetData
into something like BLGetObjectData(part, coordinates, ...). This is what
the notification callback and BLHitTestRec are starting to do.

I’m trying to set up a Blugs Appearance user pane, but my scroll bars don’t work. What gives?

When you have a user pane, you should make sure you’re calling HandleControlClick
instead of BLClick. When Blugs makes a user pane, it sets the scroll bars’ supervisor to
the user pane. That way the Control Manager reports that the pane was clicked when you
call FindControlUnderMouse. Blugs’ user pane code does the necessary dirty work
before calling BLClick internally. If BLClick is called directly on a user pane, Blugs is
unable to hit-test the scroll bars. (You see how that works? In one case you want
FindControlUnderMouse to report the user pane. Once you’re inside the user pane
code, you want to be able to find the scroll bars.)

Is Blugs available as a shared library? How about Mach-O?

Only as a static library for now. This puts the 68K and PowerPC versions on equal footing.
In the future, we may decide to make Blugs available as a shared library, for CFM/Mach-
O, but that will only be when Blugs is a mature product.

How are the Blugs binaries compiled?

A p p e n d i x C : B l u g s F A Q

141

Metrowerks CodeWarrior Pro 5 and MPW 3.6d7. Debug versions are compiled with inline
MacsBug symbols (traceback tables), all optimizations and scheduling off. PowerPC
distribution builds are targeted at generic PowerPC, highest speed optimizations, no
MacsBug symbols. A tiny portion of Blugs is written in PowerPC assembly language. All
68K libraries contain 68020 instructions, but not 68040. 68K debug builds use A6 stack
frames; non-debug builds do not. All 68K floating point calculations use SANE. Blugs does
not use floating point enough to justify 68881 or AltiVec. (Dammit Jim, I’m a list engine,
not a raytracer.)

Blugs compiles under ProjectBuilder, but not as a distinct product yet.

Is tripod.com out to get you?

The conspiracy theorist in me says yes. Twice the Blugs distribution file on my Tripod site
disappeared. The first time I never got an explanation; the second time I got one to the
effect that I had been erroneously targeted for abuse. What was the nature of the abuse, I
do not know. The pattern that began to emerge was: whenever there was an unfavorable
Napster ruling, Tripod’s overly aggressive and appallingly stupid abuse-bots went on a
rampage. Apparently, the more mission-critical the file, the more likely to be gobbled up.

A savvy insider told me that even the best web hosts pretty much suck. What this implies
about Tripod I leave to the reader’s imagination. I no longer have anything to do with
Tripod and I advise readers to do the same.

G l o s s a r y

142

Glossary

G l o s s a r y

143

ancestor In disclosure lists, any row which
“contains” the row in question. If a row’s
disclosure triangle points to the right, its
descendants are not visible. See also
descendant, parent.

autodraw A Blugs feature whereby the list’s
screen representation is updated whenever
the list is changed. Autodraw can be disabled
(either initially or on the fly) if multiple
changes are to be made to the list before it is
updated.

background The color and/or texture used
to fill a cell’s rectangle before its content is
drawn.

cell The intersection of a row and a column.
The fundamental unit of data display in a
list.

cell region A region calculated by a content
handler that Blugs uses for hit-testing and
hiliting

child In disclosure lists, a row which is
“directly contained” by the row in question.
If this row’s disclosure triangle points to the
right, its children are not visible. See also
descendant, parent.

collapse To make a row’s disclosure
triangle point to the right so that its
descendants become obscured (undisclosed).
See also expand.

content handler A user-supplied routine
which provides drawing and other
capabilities for the contents of cells and other
interface items with which it is associated.

content type A number which Blugs’ host
application associates with a content handler.

descendant In disclosure lists, a row which
is “contained” by the row in question. If this
row’s disclosure triangle points to the right,
its descendants are not visible. See also
ancestor, child.

disclosure list A list whose rows are able to
display, and respond to user manipulation
of, disclosure triangles. In a disclosure list,
rows are able to “contain” other rows. We
prefer the term disclosure to the equivalent
hierarchical.

expand To make a row’s disclosure triangle
point down so that its children become
visible (disclosed). See also collapse.

filler title An inert element that resembles a
title bevel button. Blugs draws a filler title in
the part of a title bar that does not contain
any titles. A filler title does not respond to
mouse clicks except (optionally) for drag-
resizing.

host application The code which calls
Blugs. Typically this is an application
program, but it may be a plug-in or other
type of code fragment.

host window A window owned by the host
application, inside which a Blugs list is
created.

inline edit session A state in which a cell
receives keyboard input, and this input
modifies the cell’s data. Only one inline edit
session is allowed in a single list. Not all lists
allow inline editing, and not all content
handlers support it.

list A generic type of user interface item
which may have rows and columns. See also
spreadsheet and table.

parent In disclosure lists, the row which
“directly contains” the row in question. If a
parent’s disclosure triangle points to the
right, its children are not visible. See also
ancestor, child.

representative A column to which selection
effects in all other columns are redirected.

register To make a user-defined procedure
(such as a content handler) available to
Blugs.

sort button A bevel button which contains
an icon that indicates whether and how the
list is sorted. When the sort button is clicked,
an unsorted list becomes sorted and a sorted
list has its sort direction toggled.

spreadsheet A type of list in which every
cell can potentially have a different content
type. See also table.

table A type of list in which all cells in a
column have the same content type. See also
spreadsheet.

G l o s s a r y

144

title A single element of a title bar. A
horizontal title bar contains as many titles as
there are columns in the list; a vertical title
bar has as many titles as there are rows.
Titles typically can be selected by the user;
they have radio-button behavior.

title bar A user interface item which may be
part of a list. A title bar may be horizontal or
vertical, and extends the full width or height

of the list depending on its orientation. See
title.

title row A row which extends the full
width of the list. Can be used to label a
section of a list.

widget A control-like placard drawn in line
with a scroll bar. Widgets can have content
types and data like titles or cells. They can
respond to user interaction.

Index

A
Autodraw, 21, 58

B
BLAddColumns routine, 39
BLAddRows routine, 38
BLAddWidgets routine, 87
BLAppearanceVersion routine, 94
BLBeginInlineEdit routine, 67
BLCellRect routine, 46
BLClearCell routine, 71
BLClearWidget routine, 92
BLClick routine, 50
BLCollapseRow routine, 82
BLConvertUserPaneControl routine, 63
BLCountCellFlavors routine, 71
BLCountColumns routine, 43
BLCountDescendants routine, 83
BLCountRows routine, 42
BLCountWidgets routine, 88
BLCredits routine, 95
BLDeleteColumns routine, 40
BLDeleteRows routine, 39
BLDeleteWidgets routine, 88
BLDeselectAll routine, 54
BLDispose routine, 37
BLDisposeUserPaneControl routine, 64
BLDrawBevelButton routine, 95
BLDrawPlacard routine, 95
BLEndInlineEdit routine, 67
BLEnter routine, 34
BLEnvironment routine, 94
BLExit routine, 34
BLExpandRow routine, 82
BLFlatten routine, 36
BLGetCallbacks routine, 97
BLGetCellContentType routine, 68

BLGetCellData routine, 69
BLGetCellFromDragItemRef routine, 57
BLGetCellFromUID routine, 76
BLGetCellUID routine, 77
BLGetColumnFlags routine, 44
BLGetColumnFontStyle routine, 61
BLGetColumnFromUID routine, 77
BLGetColumnIdentifier routine, 76
BLGetColumnUID routine, 78
BLGetFocusedPart routine, 60
BLGetHorizontalTitleBar routine, 84
BLGetIndent routine, 49
BLGetIndFlavorInfo routine, 71
BLGetInlineEditCell routine, 66
BLGetListFromDrag routine, 57
BLGetMinimumSize routine, 47
BLGetParentRow routine, 81
BLGetRect routine, 45
BLGetRowDisclosureLevel routine, 80
BLGetRowFlags routine, 43
BLGetRowFromUID routine, 77
BLGetRowIdentifier routine, 75
BLGetRowUID routine, 78
BLGetSelect routine, 55
BLGetSelectedTitle routine, 85
BLGetSortState routine, 72
BLGetUserData routine, 79
BLGetVerticalTitleBar routine, 84
BLGetViewRect routine, 45
BLGetWidgetContentType routine, 90
BLGetWidgetData routine, 91
BLGetWidgetFlags routine, 93
BLGetWidgetRect routine, 92
BLGetWidgetSize routine, 89
BLHitTest routine, 55
BLIdle routine, 51
BLIsActive routine, 60
BLIsCellEditable routine, 65
BLIsCellSelected routine, 54
BLIsInlineEdit routine, 66

I N D E X

145

BLIsVisible routine, 59
BLKey routine, 50
BLLoad routine, 36
BLMakeUserPaneControl routine, 63
BLMakeVisible routine, 86
BLMoveColumns routine, 42
BLMoveMarkedRows routine, 41
BLMoveRows routine, 40
BLNew routine, 35
BLNewTitleBar routine, 83
BLPageDown routine, 86
BLPageUp routine, 86
BLReceiveDrag routine, 56
BLRefFromUserPaneControl routine, 64
BLRegisterBackgroundProc routine, 98
BLRegisterBevelButtonProc routine, 98
BLRegisterBorderProc routine, 99
BLRegisterContentHandler routine, 96
BLRegisterDragDataProc routine, 101
BLRegisterDropProc routine, 102
BLRegisterDropValidationProc routine, 101
BLRegisterHiliteProc routine, 99
BLRegisterPostDragProc routine, 102
BLRegisterPreDragProc routine, 101
BLRegisterRowExpandProc routine, 100
BLRegisterSecondarySortColumnProc routine, 100
BLRemoveUserData routine, 80
BLRowIsDisclosed routine, 82
BLSearch routine, 73
BLSelectAll routine, 54
BLSelectOneCell routine, 53
BLSelectTitle routine, 85
BLSetActive routine, 60
BLSetAutodraw routine, 58
BLSetCallbacks routine, 98
BLSetCellContentType routine, 68
BLSetCellData routine, 70
BLSetCellEditable routine, 65
BLSetCellSelectable routine, 52
BLSetColumnFlags routine, 44
BLSetColumnFontStyle routine, 62
BLSetColumnIdentifier routine, 75
BLSetColumnWidth routine, 48
BLSetDefaultCellSize routine, 48
BLSetFocusedPart routine, 61
BLSetIndent routine, 49
BLSetRect routine, 46
BLSetRepresentativeColumn routine, 52
BLSetRowDisclosureLevel routine, 81
BLSetRowFlags routine, 43
BLSetRowHeight routine, 47
BLSetRowIdentifier routine, 74
BLSetScrollDistance routine, 87
BLSetSelect routine, 53
BLSettings routine, 94
BLSetUserData routine, 79
BLSetVisible routine, 59
BLSetWidgetContentType routine, 90, 93
BLSetWidgetData routine, 91
BLSetWidgetSize routine, 89
BLSort routine, 73
BLTrackDrag routine, 56
BLUnflatten routine, 37
BLUpdate routine, 58
BLWindow routine, 37

C
Callbacks, 15, 27, 103

registering, 96
Cell, 3

BLCell type, 32
numbering, xiii

Cell data, 13, 67
Click result, 31
Column borders, 5
Column data flags, 23
Column identifiers, 14, 74
Content handler, xii
Content type, xiii

D
Disclosure, 80
Disclosure option, 29
Drag and Drop, 9

disclosure constraints, 10
flags, 22
routines, 56

E
Environment flags, 19
Error codes, 32

F
Flags

column data, 23
drag, 22
environment, 19
global settings, 19
list, 20
row data, 23
title bar, 24
widget, 24

G
Get select method, 31
Global settings flags, 19
Grow box, 5

H
Hit testing, 26
Host application, xiii
Host window, xiii

I
Idle processing, 12
Inline editing, 11, 65

K
Key result, 30
Keyboard

arrow keys, 10

I N D E X

146

focus, 12
interaction, 10
navigation, 11

L
List flags, 20
List resource, xiv, 109

M
Macros

List Manager compatibility, 138
Memory requirements, xv

N
No-grow box, 5
Notification

command, 31
message, 31

P
Part codes, 25
Pascal, xiv

R
Representatives, 8
Result codes, 32
Row borders, 5
Row data flags, 23
Row identifiers, 14, 74

S
Scroll bar widget, 5

Scroll bars, 4
Searching, 72
Selectability, 8
Sort button, 4
Sort State, 30
Sorting, 72
System requirements, xii

T
Themes

Appearance & Kaleidoscope, 17, 124
Title bar, 4, 83
Title bar flags, 24
Title zones, 26
Top left corner, 4
Tripod.com conspiracy theory, 141

U
UIDs, 14, 33

routines, 76
Unique identifiers, 14, 33

routines, 76
User data, 14, 78
User-defined routines, 103

registering, 96

W
Widget, 5

routines, 87

Z
Zones

title, 26

