
Blugs Technote #3: What’s New in Blugs 1.2

Page 1 of 14

bÒgs.!
Blugs Technote #3

What’s New in Blugs 1.2

Updated Contact Information
Brian ‘Moses’ Hall

moses@blugs.com
http://www.blugs.com

702 LRDC
University of Pittsburgh
Pittsburgh, PA 15213
USA

Work: 412-624-7498
Home: 412-683-7779
Cell: 412-841-4693

Introduction
Welcome to Blugs 1.2! To prove that Blugs is still alive and well, and still fighting to beat
DataBrowser at its own game, I am releasing a substantially modified API for the Blugs List
Management Engine. This technote describes the changes in Blugs 1.2. There also some
significant changes in distribution policy: changes which should make a lot of people very happy.

Open Source License
I decided that the LGPL license was too restrictive in its requirement that end users can
recompile and relink the Blugs libraries; this is inappropriate in this case because the Blugs
API is changing too quickly. Adherence to this licensing scheme might result in excessive
version-complexity which I wish to very carefully avoid at this very volatile time in the history
of Mac OS.

Note please that this license strategy may be abandoned in favor of the Perl Artistic License or
one of its derivatives. The important thing is, I want to retain some control over the Blugs API

Blugs Technote #3: What’s New in Blugs 1.2

Page 2 of 14

and project, but I want anyone to be able to use it in their own products without any
restriction.

Blugs 1.2 is released under the ZLib license, reproduced below. You can inspect and modify the
Blugs source code. This license allows you to use Blugs in a closed-source project. Please read the
license and contact me if you have any questions or concerns:

Copyright (C) 1998-2003 Brian Hall and Kyle Hammond

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications,
and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original
software. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the
original software.
3. This notice may not be removed or altered from any source distribution.

Mach-O
Blugs compiles under ProjectBuilder and CodeWarrior as a Mach-O build. The source code has
been heavily modified with TARGET_RT_MAC_MACHO conditionals.

Changed and New Structures and Constants
Constants in both the list flags and row flags enumerations have changed. There are also various
additions to support the title bar and widget API enhancements.

List Flags

There are two removals and one addition to the list flags. The constants blDrawColumnBorders
and blDrawRowBorders have been removed in Blugs 1.2. This functionality has been replaced by
individual row and column flags, and the creation of the BLSetDefaultRowFlags and
BLSetDefaultColumnFlags functions discussed below. blPinRightColumn has been
promoted from a horizontal title bar property to a general list property, making it accessible to
lists that lack a horizontal title bar.

enum
{

blResizableHeight = 0x00000001,
blResizableWidth = 0x00000002,
blHorizontalScroll = 0x00000004,
blVerticalScroll = 0x00000008,
blLiveScroll = 0x00000010,
blSmallScroll = 0x00000020,
blAutodraw = 0x00000040,
blHasGrow = 0x00000080,
blDrawGrow = 0x00000100,
blCanFocus = 0x00000200,

Blugs Technote #3: What’s New in Blugs 1.2

Page 3 of 14

blVisible = 0x00000400,
blActive = 0x00000800,
blInlineEditOnClick = 0x00001000,
blDrawColumnBorders = 0x00002000, // GONE!
blDrawRowBorders = 0x00004000, // GONE!
blDisclosure = 0x00008000,
blBorderMetrics = 0x00010000,
blDrawBorder = 0x00020000,
blSortable = 0x00040000,
blDrawSortButton = 0x00080000,
blTable = 0x00100000,
blOnlyOne = 0x00200000,
blUseSense = 0x00400000,
blNoExtend = 0x00800000,
blNoDisjoint = 0x01000000,
blPinRightColumn = 0x02000000 // NEW!

};

Constant Description
blPinRightColumn Blugs tries to keep rightmost column pinned to the right

edge.

Row Data Flags

The blRowSelectAll flag has been added. When a row has this property, clicking on any cell
selects all cells in that row.

s WARNING
Setting up a list with rows having the blRowSelectAll flag, and setting up a list with a
representative column – these are exactly opposite. In the former case you want one cell to select
all, and in the latter case you want all cells to select one. Using both properties will undoubtedly
give you strange results, particularly in marquee-selection. s

enum
{

blRowHasChildren = 0x0001,
blRowIsExpanded = 0x0002,
blRowIsTitleRow = 0x0004,
blRowDrawBorder = 0x0008,
blRowMarkedForMovement = 0x0010,
blRowSelectAll = 0x0020 // NEW!

};

Constant Descriptions
blRowHasChildren The row has a disclosure triangle and zero or more

children. Ignored if the blDisclosure list flag is clear.
blRowIsExpanded The disclosure triangle points down. Ignored if the

blRowHasChildren flag is clear, or if the
blDisclosure list flag is clear.

blRowIsTitleRow The row consists of a single cell that extends the full list
width.

blRowDrawBorder Draw a border at the bottom of this row.
blRowMarkedForMovement Row will be moved in next call to BLMoveMarkedRows.

Generally you will only use this flag in BLSetRowFlags;

Blugs Technote #3: What’s New in Blugs 1.2

Page 4 of 14

it doesn’t make much sense to use it in a 'LiSt'
resource, although you can if you want.

blRowSelectAll When one cell in this row becomes selected, all cells in
the row are selected.

Title Bar Info

This structure contains all of the title bar fields you may modify after the title bar has been
created. The routines BLGetTitleBarInfo and BLSetTitleBarInfo use this kind of structure.

typedef struct
{

BLContentType defaultContentType;
UInt16 thickness;
UInt16 whichTitleBarFlags;
UInt16 titleBarFlags;
UInt16 whichDefaultTitleFlags;
UInt16 defaultTitleFlags;

} BLTitleBarInfo;

Field Descriptions
defaultContentType The content type to which new titles are initialized.
thickness The title bar size. (Horizontal bar thickness is ignored

under Aqua.)
whichTitleBarFlags A mask indicating which of the titleBarFlags are

applied.
titleBarFlags New title bar flags; bits masked in by

whichTitleBarFlags are applied.
whichDefaultTitleFlags A mask indicating which of the defaultTitleFlags

are applied.
defaultTitleFlags The flags to which new titles are initialized; bits masked

in by whichDefaultTitleFlags are applied.

Title Bar Info Field Flags

Use these flags to indicate to BLSetTitleBarInfo which fields of the BLTitleBarInfo
structure you wish to apply to a title bar.

enum
{

blSetTitleBarThickness = 1 << 0,
blSetTitleBarDefaultContentType = 1 << 1,
blSetTitleBarFlags = 1 << 2,
blSetTitleBarDefaultTitleFlags = 1 << 3

};

Constant Descriptions
blSetTitleBarThickness Change the title bar thickness.
BlSetTitleBarDefaultContentType Change the content type applied to new titles.
blSetTitleBarFlags Change the bar’s flags.
BlSetTitleBarDefaultTitleFlags Change the flags applied to new titles.

Blugs Technote #3: What’s New in Blugs 1.2

Page 5 of 14

Title Flags

These flags encode behavior of individual titles. A title bar contains a set of default title flags
which are applied to new titles as rows or columns are added. You can modify individual titles
by passing zero or more of these OR-combined flags to BLSetTitleFlags.

enum
{

blTitleSelectable = 0x0001
};

Constant Description
blTitleSelectable Title bevel buttons can be clicked and selected by the

user. When this feature is set, the bevel buttons have
radio button behavior. By default titles cannot be
selected.

Widget Info

This structure contains all of the widget fields you may modify after the widget has been created.
The routines BLGetWidgetInfo and BLSetWidgetInfo use this kind of structure.

Typedef struct
{

BLNotificationCommand command;
BLContentType content;
SInt16 size;
UInt16 whichWidgetFlags;
UInt16 widgetFlags;

} BLWidgetInfo;

Field Descriptions
command The widget’s notification command.
content The widget’s content type.
size The widget’s width or height.
whichWidgetFlags A mask indicating which of the widgetFlags are to be

applied.
widgetFlags The new widget flags; bits masked in by

whichWidgetFlags are applied.

Widget Info Field Flags

Use these flags to indicate to BLSetWidgetInfo which fields of the BLWidgetInfo structure you
wish to apply to a widget.

enum
{

blSetWidgetCommand = 1 << 0,

Blugs Technote #3: What’s New in Blugs 1.2

Page 6 of 14

blSetWidgetContentType = 1 << 1,
blSetWidgetSize = 1 << 2,
blSetWidgetFlags = 1 << 3

};

Constant Descriptions
blSetWidgetCommand Change widget’s notification command.
BlSetWidgetContentType Change widget’s content type
blSetWidgetSize Change widget’s size.
BlSetWidgetFlags Change widget’s flags.

Deprecated and Deleted Routines
For various reasons these routines have been deprecated or removed in Blugs 1.2.

BLEnter (Deprecated under Carbon/OS X)

Explicitly checks environment and initializes Blugs.

OSErr BLEnter(void)

If you want to make sure the host machine can run Blugs, you can call BLEnter before you use
other Blugs routines. If you do not explicitly call BLEnter, other routines (like
BLRegisterContentHandler) will automatically call it. The routine is public because you may
want to check its OSErr return value if your application may run on older machines/OSes. If you
are developing exclusively for Carbon or (especially) OS X, you can let Blugs call this routine for
you, since this degree of paranoia is probably unnecessary.

BLEnter makes some Gestalt checks: availability of Appearance Manager, Drag Manager,
Control Manager version, and 32-bit GWorld capability. It then allocates a small hash table for
storing content handler information.

If 32-bit GWorlds are not available, BLEnter returns notInitErr. This will not happen with any
PowerPC build. If memory is so short that the hash table can’t be allocated, it returns memFullErr,
in which case your application is in serious memory trouble. If BLEnter returns an error, you
must not use the Blugs API.

RESULT CODES

notInitErr (-900) (68K only) Minimum system requirements not met.
memFullErr (-108) Not enough memory.
noErr (0) No error.

BLExit (Deleted)

BLExit has been removed because it was deemed unnecessary.

Blugs Technote #3: What’s New in Blugs 1.2

Page 7 of 14

BLGetWidgetContentType, BLGetWidgetSize, BLGetWidgetFlags,

BLSetWidgetContentType, BLSetWidgetSize, BLGetWidgetFlags (Deleted)

These routines have been removed because the new routines BLGetWidgetInfo and
BLSetWidgetInfo make the API simpler and more powerful.

BLGetHorizontalTitleBar, BLGetVerticalTitleBar (Deleted)

These routines, as well as the dummy definition of the BLTitleBarRef, have been removed. All
references to title bars are now based on orientation (Boolean inVertical).

BLCredits (Deleted)

BLCredits has been removed because Blugs is going to kick DataBrowser’s ass; why would
anyone need any additional ego massage? :-)

Changed Routines
For various reasons these routines have been modified in Blugs 1.2.

BLNewTitleBar

Creates a title bar associated with a list.

OSErr BLNewTitleBar
Boolean inVertical Whether the bar is vertical or horizontal.
const BLTitleBarInfo* inInfo A structure containing the title bar

information. See the structure “Title Bar
Info” above.

BlugsRef inList The list which will contain the title bar.

BLNewTitleBar creates a title bar and associates it with a list. Blugs creates the title bar within
the bounds of the list’s view rectangle.

If inList already has a title bar of the same orientation, then the old title bar is deleted and
replaced with the new one. If this happens, the content handler(s) for the old title bar’s titles are
called to dispose of data for individual titles.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
memFullErr (-108) Could not allocate memory for title bar.
noErr (0) No error.

Blugs Technote #3: What’s New in Blugs 1.2

Page 8 of 14

BLSelectTitle

Selects a title in a title bar

OSErr BLSelectTitle
Boolean inVertical Whether the bar is vertical or horizontal.
UInt16 inTitle The title to select.
BlugsRef inList The list which contains the title bar.

Call BLSelectTitle to select inTitle and deselect any other selected title in the inVertical
title bar. If inVertical is false, the list can be sorted, and the new selection was not selected
before, Blugs makes inTitle the new primary sort column and sorts the list. This routine
behaves exactly as if the user had clicked in inTitle. Note that it is not currently possible to pass
zero for inTitle; you cannot do a “deselect all titles” operation.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Title zero; nonexistent title.
nilHandleErr (-109) Bad list or title bar reference.
noErr (0) No error.

BLGetSelectedTitle

Returns the one-based index of the currently selected title in a title bar.

UInt16 BLGetSelectedTitle
Boolean inVertical Whether the bar is vertical or horizontal.
BlugsRef inList The list which contains the title bar.

BLGetSelectedTitle returns the one-based index of the currently selected title in the
inVertical title bar. If the title bar does not contain a selection, BLGetSelectedTitle returns
zero.

New Routines
These routines were added in Blugs 1.2.

BLGetDisclosureTriangleColumn

Returns the column in which disclosure triangles are drawn.

OSErr BLGetDisclosureTriangleColumn
BlugsRef inList The list to query.

Call BLGetDisclosureTriangleColumn to determine the column in which Blugs draws
disclosure triangles. The default is column one.

Blugs Technote #3: What’s New in Blugs 1.2

Page 9 of 14

BLSetDisclosureTriangleColumn

Changes the column in which Blugs draws disclosure triangles

OSErr BLSetDisclosureTriangleColumn
UInt16 inColumn The new disclosure triangle column.
BlugsRef inList The list to change.

Call BLSetDisclosureTriangleColumn to set the column in which Blugs draws a list’s
disclosure triangles. This data is list-level, so disclosure triangles do not move with a column. The
default is one, and if you delete columns such that the value goes out of range, Blugs resets the
value to one.

s WARNING
A disclosure triangle will not be drawn in a title row if the list’s disclosure triangle column is
greater than one.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
inputOutOfBounds (-190) Column does not exist.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLDrawHiliteRect

Draws a standard hilite rectangle.

void BLDrawHiliteRect
Boolean inActive Pass true if the host list is active, false

if inactive.
const Rect* inRect The rectangle in which Blugs draws

hiliting.

Call BLDrawHiliteRect to have Blugs draw a standard hilite rectangle in the current port.
Typically you will use this call from within a content handler, to draw a portion of cell contents
in a selected/hilited state. Prior to Mac OS X 10.1, Blugs uses the RGBColor retrieved from
LMGetHiliteRGB and draws a solid rectangle if inActive is true, or a rectangular outline if
inActive is false. With Mac OS X 10.1 Blugs uses Theme brush constants (unless an error
occurs) and always draws a solid rectangle in the appropriate color. Blugs uses the appropriate
color as the background color, calls EraseRect, and restores the previous background color
before returning.

By way of example, the content handler called “Finderesque” supplied with the Blugs
distribution, has two tasks to do when drawing a selected cell. First it must draw a file icon, and
then it must draw a file name. So when its cell is selected it must draw the icon in a selected state
and then draw a hilited rectangle on which the file name is drawn. Rather than reinvent the
wheel, Finderesque in Blugs 1.2 calls BLDrawHiliteRect to apply appropriate hiliting for the
text sub-region of the cell.

Blugs Technote #3: What’s New in Blugs 1.2

Page 10 of 14

BLDrawHiliteRgn

Draws a standard hilite region.

void BLDrawHiliteRgn
Boolean inActive Pass true if the host list is active, false

if inactive.
RgnHandle inRgn The region in which Blugs draws

hiliting.

Call BLDrawHiliteRgn to have Blugs draw a standard hilite region in the current port. Typically
you will use this call from within a content handler, to draw a portion of cell contents in a
selected/hilited state. Prior to Mac OS X 10.1, Blugs uses the RGBColor retrieved from
LMGetHiliteRGB and draws a solid region if inActive is true, or an outline of the region if
inActive is false. With Mac OS X 10.1 Blugs uses Theme brush constants (unless an error
occurs) and always draws a solid region in the appropriate color. Blugs uses the appropriate
color as the background color, calls EraseRgn, and restores the previous background color before
returning.

BLSetDefaultRowFlags

Sets the flags that are copied into a new row when it is created.

OSErr BLSetDefaultRowFlags
UInt16 inWhichFlags A mask in which flag bits to be changed

are set.
UInt16 inFlags The new set of flags.
BlugsRef inList The list to change.

Call BLSetDefaultRowFlags to change the initial set of flags copied into a new row. Each list
keeps track of its default row and column flags. These are initialized to zero. This function
changes the row flags indicated by inWhichFlags to the settings in inFlags. For each bit in the
inWhichFlags mask parameter, if the bit is set then the corresponding bit in the inFlags
parameter is applied to Blugs’ stored default value. Changing the default value makes it faster to
add rows because you do not have to call BLSetRowFlags for each row.

Note
This function does not affect undocumented flags. All flag bits not documented here or in the
interface files are reserved or used internally. u

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

Blugs Technote #3: What’s New in Blugs 1.2

Page 11 of 14

BLSetDefaultColumnFlags

Sets the flags that are copied into a new column when it is created.

OSErr BLSetDefaultColumnFlags
UInt16 inWhichFlags A mask in which flag bits to be changed

are set.
Uint16 inFlags The new set of flags.
BlugsRef inList The list to change.

Call BLSetDefaultColumnFlags to change the initial set of flags copied into a new column.
Each list keeps track of its default row and column flags. These are initialized to zero. This
function changes the column flags indicated by inWhichFlags to the settings in inFlags. For
each bit in the inWhichFlags mask parameter, if the bit is set then the corresponding bit in the
inFlags parameter is applied to Blugs’ stored default value. Changing the default value makes it
faster to add columns because you do not have to call BLSetColumnFlags each time.

Note
This function does not affect undocumented flags. All flag bits not documented here or in the
interface files are reserved or used internally. u

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list reference.
noErr (0) No error.

BLGetTitleBarInfo

Gets information on a title bar.

OSErr BLGetTitleBarInfo
Boolean inVertical Whether the bar is vertical or horizontal.
BLTitleBarInfo* outInfo A structure that will contain the title bar

information. See the structure “Title Bar
Info” above.

BlugsRef inList The list which contains the title bar.

BLGetTitleBarInfo copies the title bar’s information into a structure you provide.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list or title bar reference.
noErr (0) No error.

Blugs Technote #3: What’s New in Blugs 1.2

Page 12 of 14

BLSetTitleBarInfo

Sets information on a title bar.

void BLSetTitleBarInfo
Boolean inVertical Whether the bar is vertical or horizontal.
UInt16 inWhichFields A mask with 1-bits indicating which

fields are applied. See the enumeration
“Title Bar Info Field Flags” above.

const BLTitleBarInfo* inInfo A structure containing the new title bar
information. See the structure “Title Bar
Info” above.

BlugsRef inList The list which contains the title bar.

BLSetTitleBarInfo modifies zero or more of the title bar’s internal fields with the data you
pass. For each bit set in inWhichFields, the corresponding field is copied into the title bar’s
internal representation. Blugs updates the list onscreen if necessary.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list or title bar reference.
noErr (0) No error.

BLGetWidgetInfo

Gets information on a widget.

OSErr BLGetWidgetInfo
Boolean inVertical Whether the widget is vertical or

horizontal.
BLWidgetInfo* outInfo A structure containing the widget

information. See the structure “Widget
Info” above.

BlugsRef inList The list which contains the widget.

BLGetTitleBarInfo copies the widget’s information into the structure you provide.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list or widget reference.
noErr (0) No error.

BLSetWidgetInfo

Sets information on a widget.

void BLSetWidgetInfo

Blugs Technote #3: What’s New in Blugs 1.2

Page 13 of 14

Boolean inVertical Whether the widget is vertical or
horizontal.

UInt16 inWhichFields A mask with 1-bits indicating which
fields are applied. See the enumeration
“Title Bar Info Field Flags” above.

const BLWidgetInfo* inInfo A structure containing the new widget
information. See the structure “Widget
Info” above.

BlugsRef inList The list which contains the widget.

BLSetWidgetInfo modifies zero or more of the widget’s internal fields with the data you pass
in. For each bit set in inWhichFields, the corresponding field is copied into the widget’s
internal representation. Blugs updates the list onscreen if necessary.

RESULT CODES

notInitErr (-900) Blugs is not initialized.
nilHandleErr (-109) Bad list or widget reference.
noErr (0) No error.

The 'LiSt' Resource
With the advent of the new APIs covered above, and others (row and column [default] info) still
in development, it is becoming increasingly clear that the 'LiSt' resource format – while useful
since its inception – was not sufficiently well-designed to handle the kinds of API changes Blugs
is undergoing. The same may be said of almost any resource format.

So it is with some reluctance that I declare this resource format officially deprecated. All support
for reading 'LiSt' resources will be removed from future versions of Blugs, and no further
modifications will be made to the current code base except to fix critical bugs.

Developers may find a cleaner solution by stripping the resource format down to its fixed-length
header portion (the stuff that gets sent to BLNew) and then using auxiliary resources or data files
to recreate variable-length fields such as cell data. OTOH, the Blugs API is becoming sufficiently
powerful so that creating the entire list programmatically is not so painful. I hope to work with
Blugs adopters to find the best solution – which will probably have something to do with XML!

What’s on the Horizon
I am sitting on a huge set of desired features, many of which have been successfully implemented
in the so-called Blugs 2.0 project. Most of these features will be rolled over into Blugs 1.X in order
of desirability. If one of these ideas is particularly exciting to you, please drop me a line and we’ll
see if we can’t work together to get it implemented quickly and elegantly.

• Default cell info – including content type (the spreadsheet/table distinction is going
away!)

• Carbon control/HIView implementation (partially done!)
• Quartz support (partially done!)
• Content types predefined as OSTypes by handler header files.
• Replace various common data infrastructures with CoreFoundation primitives.

Blugs Technote #3: What’s New in Blugs 1.2

Page 14 of 14

• Retool content handler API to support CarbonEvents cleanlt, and as the preferred event
handling architecture.

• 32-bit row and column numbers.
• Removal of “nth flavor data” APIs and handler messages.
• Idling via Carbon timers.
• Immediate, rather than deferred, inline editing.

