
1

VArrayLib 1.2 Reference Manual

Document Revision 1.2
August 9, 2001

L E G A L M U M B O - J U M B O

2

© 1999-2001, Brian S. Hall. All rights reserved.

No warranties, express or implied, are granted
with regard to any of the technology described in
this document. The author retains all intellectual
property rights associated with the technology
described in this document.

Trademarks: All brand names and product
names used in this document are trade names,
service marks, trademarks, or registered
trademarks of their respective owners.

The heapsort implementation is based on code
by Michael Schürig and Kyle Hammond.

The author’s home page is
http://www.blugs.com/

TO DO LIST

Pascal support.
Fibonaccian search? (Knuth)
More assembly language!
VALock
Get rid of VAMove?

C o n t e n t s

3

Contents

P r e f a c e 5

ABOUT VARRAYLIB 5
VArrayLib Features 5
Array References 5

DEVELOPMENT ENVIRONMENT 5

C h a p t e r 1 : V A r r a y L i b A P I 7

Types and Constants 7
Variable Array 7
Comparison Results 8
Result Codes 8
Callback Routines 9

VArrayLib Routines 9
Creating and Disposing of Arrays 10

VANew 10
VADispose 10

Array Information 10
VACount 10
VAItemSize 11
VARefCon 11
VASetRefCon 11
VAOwnerCount 11

Adding and Removing Data Items 12
VAAdd 12
VAAddToEnd 12
VAInsert 12
VAInsertAtEnd 13
VARemove 13
VARemoveAll 14

Moving Data Items 14
VAMove 14
VAMoveAfter 15
VAValidateMoveParameters 15
VASwap 16

Sorting and Searching 16
VASort 16
VASearch 17
VABruteForceSearch 18

Internal Sorting and Searching 18
VAInternalSort 19
VAInternalSearch 19
VAInternalBruteForceSearch 20

Getting and Setting Array Data 20
VANthItemPtr 20
VALastItemPtr 21
VAGetNthItem 21
VASetNthItem 21

Copying 22
VACopy 22
VACopyPart 22

C o n t e n t s

4

VAClone 22
VAConcatenate 23

Repetitive Tasks 23
VAIterate 23

Utility 23
VAZeroMemory 24
VASwapMemory 24
VANewNumberOnMovement 25
VANewNumberOnAddition 25
VANewNumberOnDeletion 25

P r e f a c e

5

Preface

About VArrayLib

VArrayLib is a compact library of routines for manipulating one-dimensional arrays of
same-size data elements. All arrays are referenced by a handle to a relocatable memory
block, but the external API treats these references as opaque. It is especially useful for
building more sophisticated software on top of it. It serves as the basis for the Stockpile
Manager, an open-source clone of Apple’s Collection Manager.

VArrayLib is distributed in source form (in spite of the name); the code base is small
enough that it is probably unnecessary to compile it into a static library. Future versions
may become available as a shared library for CFM-based runtimes.

VArrayLib Features

� Fast sorting (nonrecursive heapsort) and searching (binary search).
� Opaque, reference-counted array objects.
� Portions written in PowerPC assembly language for maximum speed.
� Runs on any Mac OS system. (This means you, System 6 users.)
� Uses no global data whatsoever.
� Never allocates temporary memory.

Array References

Currently a VARef is a handle to a relocatable block of memory in your application’s
heap. Sometimes you need to know this: should you obtain a pointer to part of this block
and call a routine that moves memory, the pointer may become stale. To keep this from
happening you need to call HLock and coerce the array reference to a handle. Future
versions may have a VALock routine, possibly with an internal “lock count” to enhance
reentrancy.

All references to array item numbers are one-based. This convention is used so that item zero
can be returned as an error or ‘not found’ value.

Development Environment

P r e f a c e

6

VArrayLib uses a tiny subset of the Macintosh toolbox. Only Memory Manager routines
— and not many of them — are used. Consequently, VArrayLib should work on even the
most primitive machines and operating system versions. You can probably get away
with using truly ancient Macintosh header files in your development environment.

If you define the symbol __VA_DEBUG__ prior to inclusion of VArray.h, the VArrayLib
binaries will include DebugStr calls for error conditions. Running an application based
on the debug version on a machine without a debugger will result in a system error.

VArrayLib is in general not compatible with interrupt-level processing, nor is it usable
from within an MP (multiprocessing) task. Many VArrayLib routines allocate memory. If
you are sneaky, you might be able to access array data at interrupt time. As long as your
comparison callback does not move memory, sorting and searching should work fine at
interrupt time.

VArrayLib does not use QuickDraw routines or globals, so it is safe to use in a daemon or
FBA (faceless background application).

V A r r a y L i b A P I

7

Chapter 1

VArrayLib API

This chapter details the VArrayLib API which your application uses to create and
manipulate variable arrays. A variable array is a memory block that contains a small
header, followed by a variable number of data items. All data items are the same size.

Types and Constants

This section describes the types and constants in VArrayLib. They are extracted from the
header file VArray.h.

Variable Array

A variable array begins with header defined in the structure below, followed by data
items. This information is provided for reference only. You should use accessor functions. The
struct is not part of the external API. Because the header file VArray.h is referenced by
VArray.c, the __VA_INTERNAL__ flag keeps VArray.c from redefining VARef as an
opaque object.

#ifndef __VA_INTERNAL__
typedef struct OpaqueVAReference* VARef;
#endif

typedef struct
{

UInt32 nItems;
UInt32 itemSize;
UInt32 refCon;
UInt32 ownerCount;
char data[1];

} VARec, **VARef;

Field Descriptions
nItems The number of array entries.
itemSize The size in bytes of each array entry.
refCon A reference value for use by the application.
ownerCount The number of references to the array. When the count

falls below 1, the array is deallocated.
data data[0] is the first byte of item data.

V A r r a y L i b A P I

8

Comparison Results

Your data comparison callbacks for sorting and searching should return appropriate
results from the enumerations below. The first set of constants makes sense for searching;
the second set is useful for sorting, the third set is used for iterating through the array.
The constant vaEqual is also used for sorting.

typedef SInt32 VAComparisonResult;
enum
{

vaSearchDataIsGreater = -1L,
vaEqual = 0,
vaSearchDataIsLess = 1,
vaNotEqual = 1

};

enum
{

vaFirstIsLess = -1L,
vaFirstIsGreater = 1

};

typedef UInt32 VAIteratorResult;
enum
{

vaIteratorKeepGoing,
vaIteratorStop

};

Constant Descriptions
vaSearchDataIsGreater The search data should come after the data in the array

item.
vaEqual The search data matches the data in the array item, or

the two array items are the same.
vaSearchDataIsLess The search data should come before the data in the array

item.
vaNotEqual The search data does not match the data in the array

item. This return value is only used in a brute-force
search.

vaFirstIsLess The first array item should come before the second.
vaFirstIsGreater The first array item should come after the second.
vaIteratorKeepGoing VAIterate should continue to call the iterator callback

on array entries.
vaIteratorStop VAIterate should return.

Result Codes

VArrayLib defines one user-defined OSErr code.

enum
{

vaNoMovementNecessaryErr = 2600
};

V A r r a y L i b A P I

9

Constant Description
vaNoMovementNecessaryErr

Returned by VAValidateMoveParameters, this code
indicates the parameters are OK but would result in no
net change to the array (such as moving an entry to
where it already is).

Callback Routines

In order to allow VArrayLib to search, sort, and iterate over array items, you provide
routines that evaluate array data in an appropriate way.

typedef VAComparisonResult (*VASearchProcPtr)
(const Ptr inArrayDataPtr,
void* inSearchData,
UInt32 inRefCon);

typedef VAComparisonResult (*VABruteForceSearchProcPtr)
(const Ptr inArrayDataPtr,
void* inSearchData,
UInt32 inRefCon);

typedef VAComparisonResult (*VASortProcPtr)
(const Ptr inData1Ptr,
const Ptr inData2Ptr,
UInt32 inRefCon);

typedef VAIteratorResult (*VAIteratorPtr)
(Ptr inArrayDataPtr, void* ioUserData);

Type Descriptions
VASearchProcPtr A routine that compares search data with item data in a

sorted array. This kind of routine returns one of the
constants vaSearchDataIsGreater,
vaSearchDataIsLess, or vaEqual.

VABruteForceSearchProcPtr
A routine that compares search data with item data in an
unsorted array. It returns one of the constants vaEqual
or vaNotEqual.

VASearchProcPtr A routine that compares data between two array items.
It returns one of the constants vaFirstIsLess,
vaFirstIsGreater, or vaEqual.

VAIteratorPtr A routine that can do whatever it wants with the data in
each array item. It returns one of the constants
vaIteratorKeepGoing or vaIteratorStop.

VArrayLib Routines

This section describes all routines in the VArrayLib API.

V A r r a y L i b A P I

10

Creating and Disposing of Arrays

Use the VANew function to create a variable array. Use the VADispose procedure to
decrement the array’s owner count and/or release memory associated with the array.

VANew

Creates a variable array.

VARef VANew(UInt32 inItemCount, UInt32 inItemSize,
Boolean inZero, UInt32 inRefCon)

inItemCount The number of data items the array is to hold initially.

inItemSize The size, in bytes, of each data element.

inZero If true, every byte of the data storage area is set to zero. If false,
the memory block is left uninitialized.

inRefCon A reference value that you can use any way you like.

VANew allocates a new variable array and returns a reference (handle) to it. The array’s
owner count is one. If there is not enough free memory to allocate the array, or if you
pass zero for inItemSize, VANew returns nil. You can create an empty array (by
passing zero for inItemCount) and fill it later.

VADispose

Decrements an array’s owner count.

void VADispose(VARef inArray)

inArray The array to be disposed of.

Assuming that you pass a non-nil array reference, VADispose decrements its owner
count. If the count falls below one, VADispose releases all memory occupied by the
array.

Array Information

Use these functions to get and set information on a variable array.

VACount

Determines how many items there are in an array.

UInt32 VACount(VARef inArray)

inArray The array whose items are to be counted.

V A r r a y L i b A P I

11

VACount returns the number of items in inArray.

VAItemSize

Determines the size of individual array items.

UInt32 VAItemSize(VARef inArray)

inArray The array whose item size is to be retrieved.

VAItemSize returns the size, in bytes, of an individual array item. Since all items have
to be the same size, this number applies to all items.

VARefCon

Returns an array’s reference constant.

UInt32 VARefCon(VARef inArray)

inArray The array whose reference constant is to be retrieved.

VARefCon returns the reference constant previously stored in the array by means of
VANew or VASetRefCon. You can use this reference constant any way you like.

VASetRefCon

Sets an array’s reference constant.

UInt32 VASetRefCon(UInt32 inRefCon, VARef inArray)

inRefCon The array’s new reference constant.

inArray The array whose reference constant is to be set.

VASetRefCon sets the reference constant stored in the array. You can use this reference
constant any way you like.

VAOwnerCount

Returns the number of references currently made to an array.

UInt32 VAOwnerCount(VARef inArray)

inArray The array whose owners are to be counted.

V A r r a y L i b A P I

12

VAOwnerCount returns the array’s current owner count. When an array is created, it has
an owner count of one. VAClone increments this count by one. VADispose decrements
it by one. When the count falls to zero, the array is deallocated.

Adding and Removing Data Items

Use these functions to increase or decrease the number of data items in an array.

VAAdd

Adds a number of data entries at the specified array location.

void* VAAdd(UInt32 inCount, UInt32 inAddHere, Boolean inZero,
VARef inArray)

inCount The number of data entries to be added.

inAddHere The (nonzero) position at which entries are to be added.

inZero If true, every byte of the added entries is set to zero. If false,
the entries are left uninitialized.

inArray The array to which entries are to be added.

VAAdd adds the specified number of entries at the specified position, optionally zeros the
new entries, and returns a pointer to the first byte of the first added entry. If either
inCount or inAddHere are zero, or if there is not enough memory to resize the array to
hold the added items, VAAdd returns nil.

VAAddToEnd

Adds a number of data entries to the end of the array.

void* VAAddToEnd(UInt32 inCount, Boolean inZero, VARef inArray)

inCount The number of data entries to be added.

inZero If true, every byte of the added entries is set to zero. If false, the
entries are left uninitialized.

inArray The array to which entries are to be added.

VAAddToEnd functions exactly as VAAdd, except it always appends the added items to
the end of the array.

VAInsert

Adds a one entry at the specified location, and copies data into it.

OSErr VAInsert(UInt32 inAddHere, void* inData, VARef inArray)

V A r r a y L i b A P I

13

inAddHere The (nonzero) position at which an entry is added.

inData The address from which data is copied.

inArray The array to which an entry is added.

VAInsert adds an entry at the specified position and copies VAItemSize() bytes from
inData to the new entry.

RESULT CODES

inputOutOfBounds (-190) Out-of-bounds inAddHere parameter.
memFullErr (-108) Could not resize array.
noErr (0) No error.

VAInsertAtEnd

Adds a one entry to the end of the array, and copies data into it.

OSErr VAInsertAtEnd(void* inData, VARef inArray)

inData The address from which data is copied.

inArray The array to which an entry is added.

VAInsertAtEnd adds an entry the the end of the array and copies VAItemSize()
bytes from inData to the new entry.

RESULT CODES

memFullErr (-108) Could not resize array.
noErr (0) No error.

VARemove

Removes data items from an array.

void VARemove(UInt32 inCount, UInt32 inStartHere,
VARef inArray)

inCount The number of items to be removed.

inStartHere The nonzero index of the first item to be removed.

inArray The array from which entries are to be removed.

VARemove removes the specified number of entries at the specified position. It checks to
make sure the requested count does not exceed the number of entries and adjusts this
number if necessary so it is only removing entries that actually exist. If you pass zero for

V A r r a y L i b A P I

14

inCount or inStartHere, or if there are no entries in the array, VARemove does
nothing.

VARemoveAll

Removes all array entries.

void VARemoveAll(VARef inArray)

inArray The array whose entries are to be removed.

VARemoveAll removes all entries from the array, but does not deallocate it. The array
header still records the item size, and the refCon remains intact. You can subsequently
add new entries with VAAdd.

Moving Data Items

Call VAMove to move entries to a specific array position and have other entries fall into
place around them. Call VAMoveAfter to move entries to follow a specific entry. Call
VAValidateMoveParameters to see if the parameters to VAMoveAfter are valid.

VAMove

Moves one or more items to a different location.

OSErr VAMove(UInt32 inCount, UInt32 inSource, UInt32 inDest,
VARef inArray)

inCount The number of entries to move.

inSource The (nonzero) position of the first entry to move.

inDest The (nonzero) position to which the first entry is moved.

inArray The array in which entries are to be moved.

VAMove moves inCount entries starting with the one at position inSource, so that the
first moved entry ends up at position inDest. Where necessary, it shifts other entries to
fill the gap where the moved entries were. VAMove functions as though the entries were
deleted and then added at the new location. If entries are moved to a higher position and
there are not enough entries above to fill the gap, the elements are moved to the highest
position possible. VAMove does not try to repair any parameters.

Internally, VAMove calculates the corresponding parameters to VAMoveAfter and calls
that routine.

For example if you call VAMove(2, 2, 4, array), and the array contains
{a,b,c,d,e} on entry, it contains {a,d,e,b,c} on exit; the second element (b) has
moved to position four and taken a subsequent entry with it. If you call VAMove(2, 2,
5, array), and the array contains {a,b,c,d,e} on entry, it contains {a,d,e,b,c}

V A r r a y L i b A P I

15

on exit; the second and third elements (b and c) can’t move to positions five and six
because the array is not that large: there is no position six.

RESULT CODES

inputOutOfBounds (-190) Out-of-bounds parameter.
noErr (0) No error.

VAMoveAfter

Moves one or more items to a position after another item. This is the preferred method
for moving data items.

OSErr VAMoveAfter(UInt32 inCount, UInt32 inSource,
UInt32 inDest, VARef inArray)

inCount The number of entries to move.

inSource The (nonzero) position of the first entry to move.

inDest The position after which the first entry is moved.

inArray The array in which entries are to be moved.

VAMoveAfter moves inCount entries starting with the one at position inSource, so
that the first moved entry ends up after the entry which is, on input, at position inDest.
You can pass zero for inDest: entries will move to the front of the array. Where
necessary, it shifts other entries to fill the gap where the moved entries were. If
inSource is the same as inDest or inCount is zero, VAMoveAfter does nothing and
returns noErr. If you try to move too many entries, move a sequence of entries into
itself, move to a nonexistent position, or if inSource is zero, VAMoveAfter returns
inputOutOfBounds. No attempt is made to repair parameters to keep them in bounds.

For example, if you call VAMoveAfter (2, 2, 4, array), and the array contains
{a,b,c,d,e} on entry, it contains {a,d,b,c,e } on exit; the second element (b) has
moved after the element that started out in position four (d) even though the ‘d’ shifts
down. If you call VAMove(2, 2, 6, array), and the array contains {a,b,c,d,e}
on entry, nothing happens because there is no position six.

RESULT CODES

inputOutOfBounds (-190) Out-of-bounds parameter.
noErr (0) No error.

VAValidateMoveParameters

Checks the parameters to VAMoveAfter.

OSErr VAValidateMoveParameters(UInt32 inCount, UInt32 inSource,
UInt32 inDest, UInt32 inNArrayItems)

inCount The number of entries to move.

V A r r a y L i b A P I

16

inSource The (nonzero) position of the first entry to move.

inDest The position after which the first entry is moved.

inNArrayItems The number of items in the array.

VAValidateMoveParameters checks the parameters to VAMoveAfter. This can be
useful if you have a number of arrays to modify using the same parameters. You don’t
have to call this routine – VAMoveAfter (and, indirectly, VAMove) also do the same
parameter checking. If VAValidateMoveParameters returns noErr, you can ignore
the return value of VAMoveAfter.

RESULT CODES

inputOutOfBounds (-190) Out-of-bounds parameter.
noErr (0) No error.
vaNoMovementNecessaryErr (2600)

Call would not modify the array.

VASwap

Exchanges two entries.

OSErr VASwap(UInt32 inItem1, UInt32 inItem2, VARef inArray)

inItem1, inItem2 The array items to exchange.

inArray the array whose items are exchanged.

VASwap exchanges two array entries by calling VASwapMemory. There is no memory
overhead to calling this routine. If either item parameters are zero or out of bounds
VASwap returns inputOutOfBounds. If they are the same entry, VASwap does nothing
and returns noErr.

RESULT CODES

inputOutOfBounds (-190) Out-of-bounds parameter.
noErr (0) No error.

Sorting and Searching

Call VASort to sort array items. Call VASearch to find the first matching item in a
sorted array. Call VABruteForceSearch to find an item in an unsorted array. You
provide a comparison callback function in all cases.

VASort

Sorts the items in an array.

V A r r a y L i b A P I

17

void VASort(VASortProcPtr inSortProc, UInt32 inRefCon,
VARef inArray)

inSortProc The address of a data comparison callback function.

inRefCon A reference constant that is passed along to your comparison
callback when it is invoked.

inArray The array that is to be sorted.

VASort uses a nonrecursive heapsort algorithm and a comparison callback you provide
to quickly sort the items in the array. You do not need to lock the array before calling
VASort; it calls HGetState and HLock on entry, and HSetState on exit.

If you pass a nil comparison procedure pointer, VASort does nothing.

VASearch

Finds the first matching item in a sorted array.

UInt32 VASearch(VASearchProcPtr inSearchProc, UInt32 inRefCon,
void* inSearchData, UInt32* outNext,
VARef inArray)

inSearchProc The address of a data comparison callback function.

inRefCon A reference constant that is passed along to your comparison
callback when it is invoked.

inSearchData The data to be searched for.

outNext On output, the index of the next matching item if no exact match
was found, or zero if there was no match and no next item. Pass
nil to ignore next item.

inArray The array that is to be searched.

VASearch uses a binary search algorithm and a comparison callback you provide to
quickly find the index of the data in question. The array must be sorted beforehand or
else the results will most likely not be correct. If the data is found, VASearch returns the
index of the item that holds the data. If it is not found, it returns zero and, if you pass a
non-nil value for outNext, passes back the index of the next “larger” item. If there is no
“next” item (for example, the array contains {a,b,c,d} and you search for ‘e’)
outNext points to zero on output.

In many cases, the array’s data size will be greater than 32 bits, in which case you will
actually pass a pointer to some type or struct instead of a UInt32 in the inSearchData
parameter. The value you pass in inSearchData is exactly the same as the value passed
to your comparison callback. VArrayLib doesn’t care what kind of data is passed.

If you pass a nil comparison procedure pointer, VASearch returns zero.

WARNING

V A r r a y L i b A P I

18

If your comparison procedure may allocate or move memory, you must lock the array
handle (by calling HLock) before calling VASearch.

VABruteForceSearch

Finds the first matching item in an unsorted array.

UInt32 VABruteForceSearch(VABruteForceSearchProcPtr inProc,
UInt32 inRefCon, void* inSearchData,
VARef inArray)

inProc The address of a data comparison callback function.

inRefCon A reference constant that is passed along to your comparison
callback when it is invoked.

inSearchData The data to be searched for.

inArray The array that is to be searched.

VABruteForceSearch uses a brute-force search algorithm and a comparison callback
you provide to find the index of the data in question. It returns the first array item that
the inProc callback indicates as matching the search data. If the data is found,
VABruteForceSearch returns the index of the item that holds the data. If it is not
found, VABruteForceSearch returns zero.

In many cases, the array’s data size will be greater than 32 bits, in which case you will
actually pass a pointer to some type or struct instead of a UInt32 in the inSearchData
parameter. The value you pass in inSearchData is exactly the same as the value passed
to your comparison callback. VArrayLib doesn’t care what kind of data is passed.

If you pass a nil comparison procedure pointer, VABruteForceSearch returns zero.

WARNING
If your comparison procedure may allocate or move memory, you must lock the array
handle (by calling HLock) before calling VABruteForceSearch.

Internal Sorting and Searching

You can use these routines if you want VArrayLib to perform comparisons using its own
internal routines. The routines can do 1, 2, and 4-byte signed and unsigned integer
comparisons, and byte-by-byte comparisons for larger data sizes. You can sort using data
structure fields. Pass the size of the field to compare, its offset in the entry, and whether it
is signed. VArrayLib provides the va_OffsetOf macro if your headers do not define
offsetof.

Example

typedef struct
{

UInt32 fieldU32;
SInt16 fieldS16;
SInt16 padding;

V A r r a y L i b A P I

19

} MyStruct;

// Sort an array by fieldU32
VAInternalSort(sizeof(UInt32), false,

va_OffsetOf(MyStruct,fieldU32), array);
// Sort an array by field S16
VAInternalSort(sizeof(SInt16), true,

va_OffsetOf(MyStruct, fieldS16), array);

VAInternalSort

Sorts the items in an array using internal comparison routines.

void VAInternalSort(Size inSize, Boolean inSigned,
UInt32 inOffset, VARef inArray)

inSize The size of the entry field to compare.

inSigned true if the entry field is signed.

inOffset The offset in bytes to the field within an entry.

inArray The array to search.

VAInternalSort uses a nonrecursive heapsort algorithm and internal comparison
routines to quickly sort the items in the array. You do not need to lock the array before
calling VASort; it calls HGetState and HLock on entry, and HSetState on exit.

VAInternalSearch

Finds the first matching item in a sorted array using internal comparison routines.

UInt32 VAInternalSearch(Size inSize, Boolean inSigned,
UInt32 inOffset, void* inSearchData,
UInt32* outNext, VARef inArray)

inSize The size of the entry field to compare.

inSigned true if the entry field is signed.

inOffset The offset in bytes to the field within an entry.

inSearchData The data to be searched for.

outNext On output, the index of the next matching item if no exact match
was found, or zero if there was no match and no next item. Pass
nil to ignore next item.

inArray The array to be searched.

VAInternalSearch uses a binary search algorithm and internal comparison routines to
quickly find the index of the data in question. The array must be sorted beforehand or
else the results will most likely not be correct. If the data is found, VAInternalSearch

V A r r a y L i b A P I

20

returns the index of the item that holds the data. If it is not found, it returns zero and, if
you pass a non-nil value for outNext, passes back the index of the next “larger” item.
If there is no “next” item (for example, the array contains {a,b,c,d} and you search for
‘e’) outNext points to zero on output.

VAInternalBruteForceSearch

Finds the first matching item field in an unsorted array using internal comparison
routines.

UInt32 VAInternalBruteForceSearch(Size inSize, Boolean inSigned,
UInt32 inOffset, void*
inSearchData,
VARef inArray)

inSize The size of the entry field to compare.

inSigned true if the entry field is signed.

inOffset The offset in bytes to the field within an entry.

inSearchData The data to be searched for.

inArray The array to be searched.

VAInternalBruteForceSearch uses a brute-force search algorithm and internal
comparison to find the index of the data in question. It returns the first array item that
matching the criteria. If the data is found, VAInternalBruteForceSearch returns the
index of the item that holds the data. If it is not found,
VAInternalBruteForceSearch returns zero.

Getting and Setting Array Data

Use these functions when you need to get or change array item data. VANthItemPtr
gets the address of an item’s data. VALastItemPtr gets the address of the last item’s
data. VAGetNthItem copies item data into a buffer you provide.

VANthItemPtr

Gets the address of the first byte of data in an array entry.

void* VANthItemPtr(UInt32 inItem, VARef inArray)

inItem The index of the item a pointer to whose data is to be retrieved.

inArray The array that contains the item.

VANthItemPtr returns a pointer to the first byte of data contained in inItem. If
inItem is greater than the actual number of array items, VANthItemPtr returns nil.

V A r r a y L i b A P I

21

VALastItemPtr

Gets the address of the first byte of data in the last array entry.

void* VALastItemPtr(VARef inArray)

inArray The array whose last item is sought.

VALastItemPtr returns a pointer to the first byte of data contained in the final array
entry. If there are no items in the array, VALastItemPtr returns nil.

VAGetNthItem

Copies entry data into a buffer.

OSErr VAGetNthItem(UInt32 inItem, void* outData, VARef inArray)

inItem The index of the item whose data is to be retrieved.

outData The address to which data is copied.

inArray The array that contains the item.

VAGetNthItem copies a number of bytes equal to the size of an array item into the
buffer referenced by outData. Make sure your buffer is large enough to hold
VAItemSize() bytes of data.

RESULT CODES

inputOutOfBounds (-190) Index out of range.
noErr (0) No error.

VASetNthItem

Copies data from a buffer to an array item.

OSErr VASetNthItem(UInt32 inItem, void* inData, VARef inArray)

inItem The index of the item whose data is to be retrieved.

inData The address from which data is copied.

inArray The array that contains the item.

VASetNthItem copies a number of bytes equal to the size of an array item from the
buffer referenced by inData. This routine only copies VAItemSize() bytes of data.

RESULT CODES

inputOutOfBounds (-190) Index out of range.

V A r r a y L i b A P I

22

noErr (0) No error.

Copying

Call VACopy to make an exact copy of an array. Call VACopyPart to copy entries from
the beginning of an array. Call VAClone to increment an array’s owner count. Call
VAConcatenate to merge two arrays.

VACopy

Makes a copy of an array.

VARef VACopy(VARef inSourceArray, VARef inTargetArray)

inSourceArray The array that is to be copied.

inTargetArray An array to which entries are copied, or nil to create a new
array.

VACopy makes a copy of an existing array and returns it. If inTargetArray is non-nil,
it is emptied of items and all entries are copied to it from inSourceArray. If
inTargetArray is nil, a new array is allocated. inTargetArray’s data size, count,
refCon, and data are the same as inSourceArray. Only inTargetArray’s owner
count remains untouched, or initialized to one if a new array is created. If there is not
enough memory to create a new array, VACopy returns nil.

VACopyPart

Makes a copy of part of an array.

VARef VACopy(UInt32 inItems, VARef inArray)

inItems The number of data items copied from the beginning of the
source array into the new one.

inArray The array that is to be copied.

VACopyPart makes an copy of part of an existing array and returns it. The new array
contains the first inItems data entries from the old array. The data size and refCon are
the same as in the old one. If there is not enough memory to create the new array,
VACopyPart returns nil.

VAClone

Increments an array’s owner count.

VARef VAClone(VARef inArray)

inSourceArray The array that is to be cloned.

V A r r a y L i b A P I

23

VAClone increments the array’s owner count by one and returns the array as a function
result.

VAConcatenate

Merges two arrays.

OSErr VAConcatenate(VARef inSource, VARef inDest)

inSource The array whose items are to be copied.

inDest The array to which items are to be added.

VAConcatenate copies all entries in inSource to the end of inDest. Both arrays must
have the same item size for VAConcatenate to work.

RESULT CODES

memFullErr (-108) Could not resize destination array.
paramErr (-50) Arrays have unequal entry sizes.
noErr (0) No error.

Repetitive Tasks

Call VAIterate to invoke a callback for each array entry.

VAIterate

Invokes a callback for each data item.

void VAIterate(VAIteratorPtr inProc, void* ioUserData,
VARef inArray)

inProc The address of a callback routine that is to be invoked for each
array item.

ioUserData A reference value passed to your iterator procedure.

inArray The array whose items are processed by the iterator.

VAIterate calls you iterator procedure once for each item in the array. It calls
HGetState and HLock on entry, and HSetState on exit. Generally, using VAIterate
is more convenient than writing your own for loop and calling VANthItemPtr every
time through.

Utility

V A r r a y L i b A P I

24

Call VAZeroMemory to set all bytes in a block of memory to zero. Call VASwapMemory to
exchange the data in two buffers. The routines VANewNumberOnMovement,
NewNumberOnAddition, and VANewNumberOnDeletion, simulate item renumbering.

VAZeroMemory

Sets all bytes in a block of memory to zero.

void VAZeroMemory(Ptr inPtr, UInt32 inBytes)

inPtr The address of the first byte to be zeroed.

inBytes The number of bytes to be zeroed.

VAZeroMemory sets inBytes bytes to zero, starting with the one pointed to by inPtr.
You may call this routine for a block of memory you wish to initialize or reinitialize.

In the 68K version of VArrayLib this routine is written in C. In the PowerPC version it is
written in assembly language. All versions try to store a maximum number of bytes (4
and 8, respectively) per iteration while respecting data alignment.

WARNING
You may not be saving time if you call NewPtr and VAZeroMemory instead of
NewPtrClear. Inside Macintosh: Memory claims that NewPtrClear and
NewHandleClear clear the memory byte-by-byte. However, performance seems to have
been enhanced substantially perhaps as recently as Mac OS 8.6, possibly because
BlockZero has been made available to pre-PCI Power Macs. Whatever the reason,
currently NewPtrClear outperforms VAZeroMemory by a wide margin. Your best bet
may be to use VAZeroMemory only for reinitializing memory that is already allocated.
You may also wish to use BlockZero if it is available and fall back on VAZeroMemory if
it is not.

Any information on these apparent speedups in the low-level Memory Manager would
be appreciated (the Technotes say nothing, last I checked). As would suggestions for
improving performance. A 68K assembly version sure would be nice. And I should get
around to AltiVec, not that I have a G4 to test it on.

VASwapMemory

Exchanges the data in two buffers.

void VASwapMemory(Ptr inPtr1, Ptr inPtr2, UInt32 inBytes)

inPtr1 The address of the first buffer.

inPtr2 The address of the second buffer.

inBytes The number of bytes to be swapped.

VASwapMemory exchanges inBytes bytes of data between inPtr1 and inPtr2. It
assumes that the two memory blocks do not overlap. This routine does not allocate
memory. It is used internally in the heapsort routines when dealing with data items over
32 bits in size.

V A r r a y L i b A P I

25

In the 68K version of VArrayLib this routine is written in C. The PowerPC version is
assembly language. All versions try to swap a maximum number of bytes (4 and 8,
respectively) per iteration while respecting data alignment.

VANewNumberOnMovement

Calculates how an item is renumbered as a result of VAMoveAfter.

void VANewNumberOnMovement(UInt32* ioNumber, UInt32 inCount,
UInt32 inSource, UInt32 inDest)

ioNumber On input, the number of the item before movement. On output,
the number after movement.

inCount The number of entries to move.

inSource The (nonzero) position of the first entry to move.

inDest The position after which the first entry is moved.

VANewNumberOnMovement calculates the value of*ioNumber as it would be after a call
to VAMoveAfter with the inCount, inSource, and inDest parameters. All movement
parameters are assumed to be valid. It is safe to pass zero in ioNumber.

VANewNumberOnAddition

Calculates how an item is renumbered as a result of VAAdd.

void VANewNumberOnAddition(UInt32* ioNumber, UInt32 inCount,
UInt32 inAddHere)

ioNumber On input, the number of the item before movement. On output,
the number after movement.

inCount The number of data entries to be added.

inAddHere The (nonzero) position at which entries are to be added.

VANewNumberOnAddition calculates the value of *ioNumber as it would be after a call
to VAAdd with the inCount and inAddHere parameters. All addition parameters are
assumed to be valid. It is safe to pass zero in ioNumber.

VANewNumberOnDeletion

Calculates how an item is renumbered as a result of VARemove.

void VANewNumberOnDeletion(UInt32* ioNumber, UInt32 inCount,
UInt32 inDeleteHere)

V A r r a y L i b A P I

26

ioNumber On input, the number of the item before movement. On output,
the number after movement.

inCount The number of items to be removed.

inDeleteHere The nonzero index of the first item to be removed.

VANewNumberOnDeletion calculates the value of *ioNumber as it would be after a call to
VADelete with the inCount and inDeleteHere parameters. All deletion parameters are
assumed to be valid. It is safe to pass zero in ioNumber.

